EPROM-Based 8-Bit CMOS Microcontrollers

Devices Included in this Data Sheet:

Referred to collectively as PIC16C55X.

- PIC16C554
- PIC16C557
- PIC16C558

High Performance RISC CPU:

- Only 35 instructions to learn
- All single-cycle instructions (200 ns), except for program branches which are two-cycle
- Operating speed:
- DC - 20 MHz clock input
- DC - 20 ns instruction cycle

Device	Program Memory	Data Memory
PIC16C554	512	80
PIC16C557	2 K	128
PIC16C558	2 K	128

- Interrupt capability
- 16-18 special function hardware registers
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes

Peripheral Features:

- 13-22 I/O pins with individual direction control - Pull-up resistors on PORTB
- High current sink/source for direct LED drive
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler

Pin Diagram

SSOP

PIC16C55X

Special Microcontroller Features:

- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- Serial in-circuit programming (via two pins)
- Four user programmable ID locations

Note: For additional information on enhancements, see Appendix A

CMOS Technology:

- Low power, high speed CMOS EPROM technol-
ogy
- Fully static design
- Wide operating voltage range
- 2.5 V to 5.5 V
- Commercial, Industrial and Extended temperature
range
- Low power consumption
- <2.0 mA @ 5.0V, 4.0 MHz
- $15 \mu \mathrm{~A}$ typical 3.0V, 32 kHz
- < $1.0 \mu \mathrm{~A}$ typical standby current @ 3.0V

Device Differences

Device	Voltage Range	Oscillator
PIC16C554	$2.5-5.5$	(Note 1)
PIC16C557	$2.5-5.5$	(Note 1)
PIC16C558	$2.5-5.5$	(Note 1)

Note 1: If you change from this device to another device, please verify oscillator characteristics in your application.

Table of Contents

1.0 General Description 5
2.0 PIC16C55X Device Varieties 7
3.0 Architectural Overview 9
4.0 Memory Organization 13
5.0 I/O Ports 23
6.0 Special Features of the CPU 31
7.0 Timer0 Module 47
8.0 Instruction Set Summary 53
9.0 Development Support. 67
10.0 Electrical Specifications. 73
11.0 Packaging Information 87
Appendix A: Enhancements 97
Appendix B: Compatibility 97
Index 99
On-Line Support. 101
Systems Information and Upgrade Hot Line 101
Reader Response 102
Product Identification System 103

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@mail.microchip.com or fax the Reader Response Form in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

PIC16C55X

NOTES:

1.0 GENERAL DESCRIPTION

The PIC16C55X are 18, 20 and 28-Pin EPROM-based members of the versatile PIC16CXX family of low cost, high performance, CMOS, fully-static, 8-bit microcontrollers.
All PIC ${ }^{\circledR}$ microcontrollers employ an advanced RISC architecture. The PIC16C55X have enhanced core features, eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14bit wide instruction word with the separate 8 -bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance.
PIC16C55X microcontrollers typically achieve a 2:1 code compression and a $4: 1$ speed improvement over other 8-bit microcontrollers in their class.
The PIC16C554 has 80 bytes of RAM. The PIC16C557 and PIC16C558 have 128 bytes of RAM. The PIC16C554 and PIC16C558 have 13 I/O pins and an 8bit timer/counter with an 8-bit programmable prescaler. The PIC16C557 has 22 I/O pins and an 8-bit timer/ counter with an 8-bit programmable prescaler.

PIC16C55X devices have special features to reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low cost solution, the LP oscillator minimizes power consumption, XT is a standard crystal, and the HS is for high speed crystals. The SLEEP (power-down) mode offers power saving. The user can wake-up the chip from SLEEP through several external and internal interrupts and RESET.
A highly reliable Watchdog Timer, with its own on-chip RC oscillator, provides protection against software lock-up.

A UV-erasable CERDIP packaged version is ideal for code development while the cost effective One-Time Programmable (OTP) version is suitable for production in any volume.

Table 1-1 shows the features of the PIC16C55X midrange microcontroller families.
A simplified block diagram of the PIC16C55X is shown in Figure 3-1.
The PIC16C55X series fit perfectly in applications ranging from motor control to low power remote sensors. The EPROM technology makes customization of application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages make this microcontroller series perfect for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16C55X very versatile.

1.1 Family and Upward Compatibility

Users familiar with the family of microcontrollers will realize that this is an enhanced version of the architecture. Please refer to Appendix A for a detailed list of enhancements. Code written for can be easily ported to PIC16C55X family of devices (Appendix B).
The PIC16C55X family fills the niche for users wanting to migrate up from the family and not needing various peripheral features of other members of the PIC16XX mid-range microcontroller family.

1.2 Development Support

The PIC16C55X family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost development programmer and a full-featured programmer.

PIC16C55X

TABLE 1-1: PIC16C55X FAMILY OF DEVICES

		PIC16C554	PIC16C557	PIC16C558
Clock	Maximum Frequency of Operation (MHz)	20	20	20
Memory	EPROM Program Memory (x14 words)	512	2K	2K
	Data Memory (bytes)	80	128	128
Peripherals	Timer Module(s)	TMR0	TMR0	TMR0
	Interrupt Sources	3	3	3
	I/O Pins	13	22	13
Features	Voltage Range (Volts)	2.5-5.5	2.5-5.5	2.5-5.5
	Brown-out Reset	-	-	-
	Packages	18-pin DIP, SOIC; 20-pin SSOP	$\begin{aligned} & \text { 28-pin DIP, SOIC; } \\ & 28 \text {-pin SSOP } \end{aligned}$	$\begin{gathered} \text { 18-pin DIP, SOIC, } \\ \text { SSOP } \end{gathered}$

All PIC ${ }^{\circledR}$ Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability. All PIC16C55X Family devices use serial programming with clock pin RB6 and data pin RB7.

2.0 PIC16C55X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16C55X Product Identification System section at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs. This version can be erased and reprogrammed to any of the oscillator modes.
Microchip's PICSTART ${ }^{\circledR}$ and PROMATE ${ }^{\circledR}$ programmers both support programming of the PIC16C55X.

2.2 One-Time Programmable (OTP) Devices

The availability of OTP devices is especially useful for customers who need the flexibility for frequent code updates and small volume applications. In addition to the program memory, the configuration bits must also be programmed.

2.3 Quick-Turnaround Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium-to-high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices, but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.4 Serialized Quick-Turnaround Production (SQTPsm) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.
Serial programming allows each device to have a unique number which can serve as an entry code, password or ID number.

PIC16C55X

NOTES:

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16C55X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16C55X uses a Harvard architecture in which program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently from 8 -bit wide data words. Instruction opcodes are 14-bit wide making it possible to have all single word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a singlecycle (200 ns @ 20 MHz) except for program branches. The table below lists the memory (EPROM and RAM).

Device	Program Memory (EPROM)	Data Memor (RAM)
PIC16C554	512	80
PIC16C557	2 K	128
PIC16C558	2 K	128

The PIC16C554 addresses 512×14 on-chip program memory. The PIC16C557 and PIC16C558 addresses $2 \mathrm{~K} \times 14$ program memory. All program memory is internal.

The PIC16C55X can directly or indirectly address its register files or data memory. All special function registers, including the program counter, are mapped into the data memory. The PIC16C55X has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16C55X simple yet efficient. In addition, the learning curve is reduced significantly.
The PIC16C55X devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8 -bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.
The W register is an 8-bit working register used for ALU operations. It is not an addressable register.
Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a $\overline{\text { Borrow }}$ and $\overline{\text { Digit }} \overline{\text { Borrow }}$ out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.
A simplified block diagram is shown in Figure 3-1, with a description of the device pins in Table 3-1.

FIGURE 3-1: BLOCK DIAGRAM

Device	Program Memory	Data Memory
PIC16C554	512×14	80×8
PIC16C557	$2 \mathrm{~K} \times 14$	128×8
PIC16C558	$2 \mathrm{~K} \times 14$	128×8

Note 1: Higher order bits are from STATUS Register.
2: PIC16C557 only

TABLE 3-1: PIC16C55X PINOUT DESCRIPTION

Name	Pin Number			Pin Type	Buffer Type	Description
	PDIP	SOIC	SSOP			
OSC1/CLKIN	16	16	18	I	ST/CMOS	Oscillator crystal input/external clock source output.
OSC2/CLKOUT	15	15	17	O	-	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has $1 / 4$ the frequency of OSC1, and denotes the instruction cycle rate.
$\overline{\text { MCLR }}$ /VPP	4	4	4	I/P	ST	Master clear (Reset) input/programming voltage input. This pin is an active low RESET to the device.
RA0 RA1 RA2 RA3 RA4/T0CKI	$\begin{gathered} 17 \\ 18 \\ 1 \\ 2 \\ 3 \end{gathered}$	17 18 1 2 3	$\begin{gathered} 19 \\ 20 \\ 1 \\ 2 \\ 3 \end{gathered}$	$\begin{aligned} & \text { I/O } \\ & \text { I/O } \end{aligned}$	$\begin{aligned} & \text { ST } \\ & \text { ST } \end{aligned}$	Bi-directional I/O port Bi-directional I/O port Bi-directional I/O port Bi-directional I/O port Bi-directional I/O port or external clock input for TMRO. Output is open drain type.
RB0/INT	6	6	7	I/O	TTL/ST ${ }^{(1)}$	Bi-directional I/O port can be software programmed for internal weak pull-up. RBO/INT can also be selected as an external interrupt pin.
RB1	7	7	8	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB2	8	8	9	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB3	9	9	10	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up.
RB4	10	10	11	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin.
RB5	11	11	12	I/O	TTL	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin.
RB6	12	12	13	I/O	$\mathrm{TTL} / \mathrm{S} \mathrm{~T}^{(2)}$	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin. Serial programming clock.
RB7	13	13	14	I/O	TTL/ST ${ }^{(2)}$	Bi-directional I/O port can be software programmed for internal weak pull-up. Interrupt-on-change pin. Serial programming data.
$\mathrm{RCO}^{(3)}$	18	18	18	I/O	TTL	Bi-directional I/O port input buffer.
$\mathrm{RC1} 1^{(3)}$	19	19	19	1/O	TTL	Bi-directional I/O port input buffer.
$\mathrm{RC}^{(3)}$	20	20	20	I/O	TTL	Bi-directional I/O port input buffer.
$\mathrm{RC}_{3}{ }^{(3)}$	21	21	21	I/O	TTL	Bi-directional I/O port input buffer.
$\mathrm{RC} 4{ }^{(3)}$	22	22	22	I/O	TTL	Bi-directional I/O port input buffer.
RC5 ${ }^{(3)}$	23	23	23	I/O	TTL	Bi-directional I/O port input buffer.
RC6 ${ }^{(3)}$	24	24	24	I/O	TTL	Bi-directional I/O port input buffer.
RC7 ${ }^{(3)}$	25	25	25	1/O	TTL	Bi-directional I/O port input buffer.
Vss	5	5	5,6	P	-	Ground reference for logic and I/O pins.
VDD	14	14	15,16	P	-	Positive supply for logic and I/O pins.
Legend:	$\begin{aligned} & \text { O = Output } \\ & -=\text { Not used } \\ & \text { TTL = TTL input } \end{aligned}$			$\begin{aligned} & \text { I/O = Input/output } \\ & \mathrm{I}=\text { Input } \end{aligned}$		$\begin{aligned} & \mathrm{P}=\text { Power } \\ & \mathrm{ST}=\text { Schmitt Trigger input } \end{aligned}$

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
3: PIC16C557 only.

3.1 Clocking Scheme/Instruction Cycle

The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the program counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle
while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 3-1).
A fetch cycle begins with the program counter (PC) incrementing in Q1.
In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCKIINSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16C55X has a 13-bit program counter capable of addressing an $8 \mathrm{~K} \times 14$ program memory space. Only the first 512×14 (0000h - 01FFh) for the PIC16C554 and 2K x 14 (0000h - 07FFh) for the PIC16C557 and PIC16C558 are physically implemented. Accessing a location above these boundaries will cause a wrap-around within the first 512×14 spaces in the PIC16C554, or $2 \mathrm{~K} \times 14$ space of the PIC16C558 and PIC16C557. The RESET vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1, Figure 4-2).

FIGURE 4-1: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C554

FIGURE 4-2: PROGRAM MEMORY MAP AND STACK FOR THE PIC16C557 AND PIC16C558

4.2 Data Memory Organization

The data memory (Figure 4-3 through Figure 4-5) is partitioned into two banks which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). Bank 0 is selected when the RPO bit (STATUS $\langle 5\rangle$) is cleared. Bank 1 is selected when the RPO bit is set. The Special Function Registers are located in the first 32 locations of each Bank. Register locations 20-6Fh (Bank 0) on the PIC16C554 and 207Fh (Bank 0) and A0-BFh (Bank 1) on the PIC16C558 and PIC16C557 are General Purpose Registers implemented as static RAM. Some special purpose registers are mapped in Bank 1.

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 80×8 in the PIC16C554 and 128×8 in the PIC16C557 and PIC16C558. Each can be accessed either directly or indirectly through the File Select Register, FSR (Section 4.4).

FIGURE 4-3: DATA MEMORY MAP FOR THE PIC16C554

File Address			File Address
$\begin{aligned} & \text { 00h } \\ & \text { 01h } \end{aligned}$	INDF ${ }^{(1)}$	$\mathrm{INDF}^{(1)}$	80h
	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
OAh	PCLATH	PCLATH	8Ah
OBh	INTCON	INTCON	8Bh
0Ch			8Ch
0Dh			8Dh
OEh		PCON	8Eh
OFh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9 Ch
1Dh			9Dh
1Eh			9Eh
1Fh			9Fh
20h			AOh
	General Purpose		
70h			
7Fh			FFh
	Bank 0	Bank 1	

Unimplemented data memory locations, read as ' 0 '.
Note 1: Not a physical register.

FIGURE 4-4: DATA MEMORY MAP FOR THE PIC16C557

FIGURE 4-5: DATA MEMORY MAP FOR THE PIC16C558

File Address			File Address
00h	INDF ${ }^{(1)}$	INDF ${ }^{(1)}$	80h
01h	TMR0	OPTION	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h			88h
09h			89h
OAh	PCLATH	PCLATH	8Ah
$\begin{aligned} & \mathrm{OBh} \\ & \mathrm{OCh} \end{aligned}$	INTCON	INTCON	8Bh
			8Ch
ODh			8Dh
OEh		PCON	8Eh
0Fh			8Fh
10h			90h
11h			91h
12h			92h
13h			93h
14h			94h
15h			95h
16h			96h
17h			97h
18h			98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9 Ch
1Dh			9Dh
1Eh			9Eh
$\begin{aligned} & \text { 1Fh } \\ & \text { 20h } \end{aligned}$			9Fh
	General Purpose Register	General Purpose Register	AOh BFh
			COh
7Fh		Bank 1	FFh
	Bank 0		
\square Unimp Note 1	mented data ot a physical	y locations,	I as '0'.

4.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral functions for controlling the desired operation of the device (Table 4-1). These registers are static RAM.

The Special Function Registers can be classified into two sets (core and peripheral). The special function registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

TABLE 4-1: SPECIAL REGISTERS FOR THE PIC16C55X

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Detail on Page:
Bank 0											
OOh	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register)								$x \mathrm{xxx} \times \mathrm{xxx}$	21
01h	TMR0	Timer0 Module's Register								xxxx xxxx	47
02h	PCL	Program Counter's (PC) Least Significant Byte								00000000	21
03h	STATUS	IRP ${ }^{(2)}$	$\mathrm{RP1}{ }^{(2)}$	RP0	TO	$\overline{\mathrm{PD}}$	z	DC	C	0001 1xxx	17
04h	FSR	Indirect data memory address pointer								$x x x x$ xxxx	21
05h	PORTA	-	-	-	RA4	RA3	RA2	RA1	RAO	---x $x x x x$	23
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0		25
07h	PORTC ${ }^{(4)}$	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	27
08h	-	Unimplemented								-	-
09h	-	Unimplemented								-	-
OAh	PCLATH	-	-	-	Write buffer for upper 5 bits of program counter					---0 0000	21
OBh	INTCON	GIE	(3)	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	19
OCh	-	Unimplemented								-	-
0Dh-1Eh	-	Unimplemented								-	-
1Fh	-	Unimplemented								-	-
Bank 1											
80h	INDF	Addressing this location uses contents of FSR to address data memory (not a physical register)								xxxx xxxx	21
81h	OPTION	$\overline{\mathrm{RBPU}}$	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PSO	11111111	18
82h	PCL	Program Counter's (PC) Least Significant Byte								00000000	21
83h	STATUS	-	-	RPO	TO	$\overline{\text { PD }}$	Z	DC	C	0001 1xxx	17
84h	FSR	Indirect data memory address pointer								xxxx xxxx	21
85h	TRISA	-	-	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISAO	---1 1111	23
86h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	11111111	25
87h	TRISC ${ }^{(4)}$	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11111111	27
88h	-	Unimplemented								-	-
89h	-	Unimplemented								-	-
8Ah	PCLATH	-	-	-	Write buffer for upper 5 bits of program counter					---0 0000	21
8Bh	INTCON	GIE	(3)	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	19
8Ch	-	Unimplemented								-	-
8Dh	-	Unimplemented								-	-
8Eh	PCON	-	-	-	-	-	-	$\overline{\text { POR }}$	-	---- --0-	20
8Fh-9Eh	-	Unimplemented								-	-
9Fh	-	Unimplemented								-	-

Legend: - = Unimplemented locations read as ' 0 ', $u=$ unchanged, $x=$ unknown, $q=$ value depends on condition, shaded $=$ unimplemented
Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
2: IRP \& RP1 bits are reserved, always maintain these bits clear.
3: Bit 6 of INTCON register is reserved for future use. Always maintain this bit as clear.
4: PIC16C557 only.

4.2.2.1 STATUS Register

The STATUS register, shown in Figure 4-2, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the $Z, D C$ or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ bits are not writable. Therefore, the result of an instruction with the STATUS register as the destination may be different than intended.
For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000uuluu (where $u=$ unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the STATUS register because these instructions do not affect any status bits. For other instructions, not affecting any status bits, see the "Instruction Set Summary".

Note 1: The IRP and RP1 bits (STATUS<7:6>) are not used by the PIC16C55X and should be programmed as ' 0 '. Use of these bits as general purpose R/W bits is NOT recommended, since this may affect upward compatibility with future products.
2: The C and DC bits operate as a Borrow and Digit Borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

REGISTER 4-1: STATUS REGISTER (ADDRESS 03h OR 83h)

Reserved
Reserved
IRP

bit $7 \quad$ IRP: Register Bank Select bit (used for Indirect addressing)
1 = Bank 2, 3 (100h-1FFh)
0 = Bank 0, 1 (00h - FFh)
The IRP bit is reserved on the PIC16C55X, always maintain this bit clear
bit 6-5 RP1:RP0: Register Bank Select bits (used for Direct addressing)
11 = Bank 3 (180h-1FFh)
10 = Bank 2 (100h-17Fh)
01 = Bank 1 (80h-FFh)
00 = Bank 0 (00h - 7Fh)
Each bank is 128 bytes. The RP1 bit is reserved on the PIC16C55X, always maintain this bit clear.
bit $4 \quad \overline{\text { TO: Timeout bit }}$
1 = After power-up, CLRWDT instruction, or SLEEP instruction
0 = A WDT timeout occurred
bit $3 \quad \overline{P D}$: Power-down bit
1 = After power-up or by the CLRWDT instruction
$0=$ By execution of the SLEEP instruction
bit $2 \quad$ Z: Zero bit
$1=$ The result of an arithmetic or logic operation is zero
$0=$ The result of an arithmetic or logic operation is not zero
bit 1 DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow the polarity is reversed)
1 = A carry-out from the 4th low order bit of the result occurred
$0=$ No carry-out from the 4th low order bit of the result
bit $0 \quad$ C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions)
1 = A carry-out from the Most Significant bit of the result occurred
$0=$ No carry-out from the Most Significant bit of the result occurred
Note 1: For $\overline{\text { borrow }}$ the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR reset	' 1 ' $=$ Bit is set	$\prime 0$ ' = Bit is cleared

PIC16C55X

4.2.2.2 OPTION Register

The OPTION register is a readable and writable register which contains various control bits to configure the TMRO/WDT prescaler, the external RBO/INT

Note 1: To achieve a 1:1 prescaler assignment for TMRO, assign the prescaler to the WDT (PSA = 1). interrupt, TMRO and the weak pull-ups on PORTB.

REGISTER 4-2: OPTION REGISTER (ADDRESS 81H)

| R/W-1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\text { RBPU }}$ | INTEDG | TOCS | TOSE | PSA | PS2 | PS1 | PSO |
| bit7 bit0 | | | | | | | |

bit $7 \quad \overline{\text { RBPU: PORTB Pull-up Enable bit }}$
1 = PORTB pull-ups are disabled
$0=$ PORTB pull-ups are enabled by individual port latch values
bit 6 INTEDG: Interrupt Edge Select bit
1 = Interrupt on rising edge of RBO/INT pin
$0=$ Interrupt on falling edge of RBO/INT pin
bit 5 TOCS: TMRO Clock Source Select bit
1 = Transition on RA4/TOCKI pin
$0=$ Internal instruction cycle clock (CLKOUT)
bit 4 TOSE: TMRO Source Edge Select bit
1 = Increment on high-to-low transition on RA4/TOCKI pin
0 = Increment on low-to-high transition on RA4/TOCKI pin
bit 3 PSA: Prescaler Assignment bit
1 = Prescaler is assigned to the WDT
$0=$ Prescaler is assigned to the Timer0 module
bit 2-0 PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	$1: 2$	$1: 1$
001	$1: 4$	$1: 2$
010	$1: 8$	$1: 4$
011	$1: 16$	$1: 8$
100	$1: 32$	$1: 16$
101	$1: 64$	$1: 32$
110	$1: 128$	$1: 64$
111	$1: 256$	$1: 128$

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR reset	' 1 ' $=$ Bit is set	' 0 ' $=$ Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

4.2.2.3 INTCON Register

The INTCON register is a readable and writable register which contains the various enable and flag bits for all interrupt sources.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).

REGISTER 4-3: INTCON REGISTER (ADDRESS OBH OR 8BH)

| R/W-0 | Reserved | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-x |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| GIE | - | TOIE | INTE | RBIE | TOIF | INTF | RBIF |
| bit7 | | | | | | | |

bit 7 GIE: Global Interrupt Enable bit
1 = Enables all un-masked interrupts
0 = Disables all interrupts
bit 6 Reserved: For future use. Always maintain this bit clear.
bit 5 TOIE: TMRO Overflow Interrupt Enable bit
1 = Enables the TMRO interrupt
$0=$ Disables the TMR0 interrupt
bit 4 INTE: RBO/INT External Interrupt Enable bit
1 = Enables the RBO/INT external interrupt
0 = Disables the RBO/INT external interrupt
bit 3 RBIE: RB Port Change Interrupt Enable bit
1 = Enables the RB port change interrupt
$0=$ Disables the RB port change interrupt
bit 2 TOIF: TMRO Overflow Interrupt Flag bit
1 = TMR0 register has overflowed (must be cleared in software)
0 = TMRO register did not overflow
bit 1 INTF: RBO/INT External Interrupt Flag bit
1 = The RBO/INT external interrupt occurred (must be cleared in software)
0 = The RB0/INT external interrupt did not occur
bit $0 \quad$ RBIF: RB Port Change Interrupt Flag bit
1 = When at least one of the RB7:RB4 pins changed state (must be cleared in software)
$0=$ None of the RB7:RB4 pins have changed state

Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR reset	' 1 ' $=$ Bit is set	' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

PIC16C55X

4.2.2.4 PCON Register

The PCON register contains a flag bit to differentiate between a Power-on Reset, an external $\overline{M C L R}$ Reset or WDT Reset. See Section 6.3 and Section 6.4 for detailed RESET operation.

REGISTER 4-4: PCON REGISTER (ADDRESS 8Eh)

bit 7-2 Unimplemented: Read as ' 0 '
bit $1 \quad \overline{\text { POR: Power-on Reset status bit }}$
1 = No Power-on Reset occurred
0 = Power-on Reset occurred
bit $0 \quad$ Unimplemented: Read as ' 0 '

Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR reset	' 1 ' = Bit is set	' 0 ' = Bit is cleared $\quad \mathrm{x}=$ Bit is unknown

4.3 PCL and PCLATH

The program counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high bits ($\mathrm{PC}<12: 8>$) are not directly readable or writable and come from PCLATH. On any RESET, the PC is cleared. Figure 4-6 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH $<4: 0>\rightarrow \mathrm{PCH}$). The lower example in Figure 4-6 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH $<4: 3>\rightarrow \mathrm{PCH}$).

FIGURE 4-6: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the application note "Implementing a Table Read" (AN556).

4.3.2 STACK

The PIC16C55X family has an 8-level deep x 13-bit wide hardware stack (Figure 4-1 and Figure 4-2). The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.

2: There are no instructions mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or vectoring to an interrupt address.

4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.
Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the file select register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a nooperation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8 -bit FSR register and the IRP bit (STATUS $<7>$), as shown in Figure 4-7. However, IRP is not used in the PIC16C55X.
A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 4-1.

EXAMPLE 4-1:

	movlw movwf
NEXT	clrf
	incf
	btfss
	goto

CONTINUE:

INDIRECT ADDRESSING

0x20 ;initialize pointer
FSR ; to RAM

INDF ;clear INDF register
FSR ;inc pointer
FSR,4 ;all done?
NEXT ; no clear next
;yes continue

FIGURE 4-7: DIRECT/INDIRECT ADDRESSING PIC16C55X

For memory map detail see Figure 4-3 and Figure 4-5.
Note 1: The RP1 and IRP bits are reserved, always maintain these bits clear.

5.0 I/O PORTS

The PIC16C554 and PIC16C558 have two ports, PORTA and PORTB. The PIC16C557 has three ports, PORTA, PORTB and PORTC.

5.1 PORTA and TRISA Registers

PORTA is a 5-bit wide latch. RA4 is a Schmitt Trigger input and an open-drain output. Port RA4 is multiplexed with the TOCKI clock input. All other RA port pins have Schmitt Trigger input levels and full CMOS output drivers. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.
A ' 1 ' in the TRISA register puts the corresponding output driver in a Hi-impedance mode. A ' 0 ' in the TRISA register puts the contents of the output latch on the selected pin(s).
Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.

Note 1: On RESET, the TRISA register is set to all inputs.

FIGURE 5-1: BLOCK DIAGRAM OF PORT PINS RA<3:0>

FIGURE 5-2: BLOCK DIAGRAM OF RA4 PIN

TABLE 5-1: PORTA FUNCTIONS

Name	Bit \#	Buffer Type	Function
RAO	Bit 0	ST	Bi-directional I/O port.
RA1	Bit 1	ST	Bi-directional I/O port.
RA2	Bit 2	ST	Bi-directional I/O port.
RA3	Bit 3	ST	Bi-directional I/O port.
RA4/TOCKI	Bit 4	ST	Bi-directional I/O port or external clock input for TMR0. Output is open drain type.

Legend: ST = Schmitt Trigger input
TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
05 h	PORTA	-	-	-	RA4	RA3	RA2	RA1	RA0	$---x$ xxxx	---u uuuu
85 h	TRISA	-	-	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	---11111	---11111

Legend: - = Unimplemented locations, read as ' 0 ', $x=$ unknown, $u=$ unchanged
Note 1: Shaded bits are not used by PORTA.

5.2 PORTB and TRISB Registers

PORTB is an 8 -bit wide bi-directional port. The corresponding data direction register is TRISB. A ' 1 ' in the TRISB register puts the corresponding output driver in a Hi-impedance mode. A ' 0 ' in the TRISB register puts the contents of the output latch on the selected pin(s).

Reading PORTB register reads the status of the pins whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch.
Each of the PORTB pins has a weak internal pull-up ($\approx 200 \mu \mathrm{~A}$ typical). A single control bit can turn on all the pull-ups. This is done by clearing the RBPU (OPTION<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on Power-on Reset.
Four of PORTB's pins, RB7:RB4, have an interrupt-onchange feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RBIF interrupt (flag
latched in INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- Any read or write of PORTB (this will end the mismatch condition)
- Clear flag bit RBIF

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition, and allow flag bit RBIF to be cleared.
The interrupt on mismatch feature, together with software configurable pull-ups on these four pins, allows easy interface to a key pad and make it possible for wake-up on key-depression. (See AN552 in the Microchip Embedded Control Handbook.)

Note 1: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may not get set.
The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

FIGURE 5-3: BLOCK DIAGRAM OF RB7:RB4 PINS

PIC16C55X

FIGURE 5-4: BLOCK DIAGRAM OF RB3:RB0 PINS

Note 1: TRISB = 1 enables weak pull-up if $\overline{\mathrm{RBPU}}=\mathbf{~} 0$ ' (OPTION<7>).

TABLE 5-3: PORTB FUNCTIONS

Name	Bit \#	Buffer Type	Function
RB0/INT	Bit 0	TTL/ST ${ }^{(1)}$	Bi-directional I/O port. Internal software programmable weak pull-up.
RB1	Bit 1	TTL	Bi-directional I/O port. Internal software programmable weak pull-up.
RB2	Bit 2	TTL	Bi-directional I/O port. Internal software programmable weak pull-up.
RB3	Bit 3	TTL	Bi-directional I/O port. Internal software programmable weak pull-up.
RB4	Bit 4	TTL	Bi-directional I/O port (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	Bit 5	TTL	Bi-directional I/O port (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	Bit 6	TTL/ST ${ }^{(2)}$	Bi-directional I/O port (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock pin.
RB7	Bit 7	TTL/ST ${ }^{(2)}$	Bi-directional I/O port (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data pin.

Legend: $\mathrm{ST}=$ Schmitt Trigger, TTL = TTL input
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.
2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.
TABLE 5-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB AND TRISB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
06 h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	$x x x x$ xxxx	uuuu uuuu
86 h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	11111111	11111111
81 h	OPTION	$\overline{\text { RBPU }}$	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	11111111	11111111
OBH, 8BH	INTCON	GIE	Reserved	TOIE	INTE	BRIE	TOIF	INTF	RBIF	$0000000 x$	$0000000 x$

Legend: $\mathrm{X}=$ unknown, $\mathrm{u}=$ unchanged
Note 1: Shaded bits are not used by PORTB.

5.3 PORTC and TRISC Registers ${ }^{(1)}$

PORTC is a 8-bit wide latch. All pins have data direction bits (TRIS registers) which can configure these pins as input or output.
A ' 1 ' in the TRISC register puts the corresponding output driver in a Hi-impedance mode. A ' 0 ' in the TRISC register puts the contents of the output latch on the selected pin(s).
Reading the PORTC register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. So a write to a port implies that the port pins are first read, then this value is modified and written to the port data latch

FIGURE 5-5: BLOCK DIAGRAM OF PORT PINS RC<7:0>

TABLE 5-5: PORTC FUNCTIONS

Name	Bit \#	Buffer Type	Function
RC0	Bit 0	TTL	Bi-directional I/O port.
RC1	Bit 1	TTL	Bi-directional I/O port.
RC2	Bit 2	TTL	Bi-directional I/O port.
RC3	Bit 3	TTL	Bi-directional I/O port.
RC4	Bit 4	TTL	Bi-directional I/O port.
RC5	Bit 5	TTL	Bi-directional I/O port.
RC6	Bit 6	TTL	Bi-directional I/O port.
RC7	Bit 7	TTL	Bi-directional I/O port.

Legend: ST = Schmitt Trigger, TTL = TTL input
TABLE 5-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC AND TRISC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
07 h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx $x \times x$ x	uuuu uuuu
87 h	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11111111	11111111

Legend: $\mathrm{x}=$ unknown, $\mathrm{u}=$ unchanged
Note 1: PIC16C557 ONLY.

5.4 I/O Programming Considerations

5.4.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g., bit 0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading the port register, reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.
Example 5-1 shows the effect of two sequential read-modify-write instructions (ex., BCF, BSF, etc.) on an I/O port.
A pin actively outputting a low or high should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 5-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

```
; Initial PORT settings: PORTB<7:4> Inputs
;
; PORTB<3:0> Outputs
; PORTB<7:6> have external pull-up and are
; not connected to other circuitry
PORT latch PORT pins
--------- ---------
    BCF PORTB, 7 ; 01pp pppp 11pp pppp
    BCF PORTB, 6 ; 10pp pppp 11pp pppp
    BSF STATUS, RP0 ;
    BCF TRISB, 7 ; 10pp pppp 11pp pppp
    BCF TRISB, 6 ; 10pp pppp 10pp pppp
```


5.4.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle, as shown in Figure 5-6. Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction which causes that file to be read into the CPU is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with an NOP or another instruction not accessing this I/O port.

FIGURE 5-6: SUCCESSIVE I/O OPERATION

Note 1: This example shows write to PORTB followed by a read from PORTB.
2: Data setup time $=(0.25$ TCY - TPD) where TCY = instruction cycle and TPD = propagation delay of Q1 cycle to output valid. Therefore, at higher clock frequencies, a write followed by a read may be problematic.

PIC16C55X

NOTES:

6.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real-time applications. The PIC16C55X family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection.
These are:

1. OSC selection
2. RESET
3. Power-on Reset (POR)
4. Power-up Timer (PWRT)
5. Oscillator Start-Up Timer (OST)
6. Interrupts
7. Watchdog Timer (WDT)
8. SLEEP
9. Code protection
10. ID Locations
11. In-circuit serial programming ${ }^{\text {TM }}$

The PIC16C55X has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), which is intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two functions onchip, most applications need no external RESET circuitry.
The SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

6.1 Configuration Bits

The configuration bits can be programmed (read as ' 0 ') or left unprogrammed (read as ' 1 ') to select various device configurations. These bits are mapped in program memory location 2007h.
The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

REGISTER 6-1: CONFIGURATION WORD

CP1	CP0	CP1	CP0	CP1	CP0	-	Reserved	CP1	CP0	PWRTE	WDTE	FOSC1	F0SC0
bit 13													

bit 13-8	CP<1:0> : Code protection bits ${ }^{(1)}$
bit 5-4	$11=$ Program Memory code protection off $10=0400 \mathrm{~h}-07 \mathrm{FFh}$ code protected $01=0200 \mathrm{~h}-07 \mathrm{FFh}$ code protected $11=0000 \mathrm{~h}-07 \mathrm{FFh}$ code protected
bit 7	Unimplemented: Read as ' 1 '
bit 6	Reserved: Do not use
bit 3	PWRTE: Power-up Timer Enable bit 1 = PWRT disabled $0=$ PWRT enabled
bit 2	WDTE: Watchdog Timer Enable bit
	1 = WDT enabled $0=$ WDT disabled
bit 1-0	FOSC1:FOSC0: Oscillator Selection bits
	11 = RC oscillator
	$10=$ HS oscillator
	$01=$ XT oscillator
	00 = LP oscillator

Note 1: All of the CP1:CP0 pairs have to be given the same value to enable the code protection scheme listed.

Legend:		
$R=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR reset	' 1 ' = Bit is set	' 0 ' $=$ Bit is cleared $\quad x=$ Bit is unknown

6.2 Oscillator Configurations

6.2.1 OSCILLATOR TYPES

The PIC16C55X can be operated in four different oscillator options. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

6.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 6-1). The PIC16C55X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 6-2).

FIGURE 6-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

Note 1: A series resistor may be required for AT strip cut crystals.
2: See Table 6-1 and Table 6-2 for recommended values of C1 and C2.

FIGURE 6-2:

EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 6-1: CAPACITOR SELECTION FOR CERAMIC RESONATORS (PRELIMINARY)

Ranges Characterized:			
Mode	Freq	OSC1(C1)	OSC2(C2)
XT	455 kHz	$22-100 \mathrm{pF}$	$22-100 \mathrm{pF}$
	2.0 MHz	$15-68 \mathrm{pF}$	$15-68 \mathrm{pF}$
	4.0 MHz	$15-68 \mathrm{pF}$	$15-68 \mathrm{pF}$
HS	8.0 MHz	$10-68 \mathrm{pF}$	$10-68 \mathrm{pF}$
	16.0 MHz	$10-22 \mathrm{pF}$	$10-22 \mathrm{pF}$

Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult with the resonator manufacturer for appropriate values of external components.

TABLE 6-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR (PRELIMINARY)

Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	$68-100 \mathrm{pF}$	$68-100 \mathrm{pF}$
	200 kHz	$15-30 \mathrm{pF}$	$15-30 \mathrm{pF}$
XT	100 kHz	$68-150 \mathrm{pF}$	$150-200 \mathrm{pF}$
	2 MHz	$15-30 \mathrm{pF}$	$15-30 \mathrm{pF}$
	4 MHz	$15-30 \mathrm{pF}$	$15-30 \mathrm{pF}$
HS	8 MHz	$15-30 \mathrm{pF}$	$15-30 \mathrm{pF}$
	10 MHz	$15-30 \mathrm{pF}$	$15-30 \mathrm{pF}$
	20 MHz	$15-30 \mathrm{pF}$	$15-30 \mathrm{pF}$

Note 1: Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Rs may be required in HS mode as well as XT mode to avoid overdriving crystals with low-drive level specification. Since each crystal has its own characteristics, the user should consult with the crystal manufacturer for appropriate values of external components.

6.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a pre-packaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 6-3 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The $4.7 \mathrm{k} \Omega$ resistor provides the negative feedback for stability. The $10 \mathrm{k} \Omega$ potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 6-3: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 6-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 6-4: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

6.2.4 RC OSCILLATOR

For timing insensitive applications the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure $6-5$ shows how the R/C combination is connected to the PIC16C55X. For REXT values below $2.2 \mathrm{k} \Omega$, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g., $1 \mathrm{M} \Omega$), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between $3 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$.
Although the oscillator will operate with no external capacitor (CEXT $=0 \mathrm{pF}$), we recommend using values above 20 pF for noise and stability reasons. With no or small external capacitance, the oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.
The oscillator frequency, divided by 4 , is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (Figure 3-2 for waveform).

FIGURE 6-5: RC OSCILLATOR MODE

6.3 RESET

The PIC16C55X differentiates between various kinds of RESET:

- Power-on Reset (POR)
- $\overline{\text { MCLR }}$ Reset during normal operation
- $\overline{M C L R}$ Reset during SLEEP
- WDT Reset (normal operation)
- WDT wake-up (SLEEP)

Some registers are not affected in any RESET condition; their status is unknown on POR and unchanged in any other RESET. Most other registers are reset to a "RESET state" on Power-on Reset, on MCLR or WDT Reset and on MCLR Reset during SLEEP. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ bits are set or cleared differently in different RESET situations as indicated in Table 6-4. These bits are used in software to determine the nature of the RESET. See Table 6-6 for a full description of RESET states of all registers.

A simplified block diagram of the on-chip RESET circuit is shown in Figure 6-6.
The $\overline{M C L R}$ Reset path has a noise filter to detect and ignore small pulses. See Table 10-3 for pulse width specification.

FIGURE 6-6: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Note 1: This is a separate oscillator from the RC oscillator of the CLKIN pin.

6.4 Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST)

6.4.1 POWER-ON RESET (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of $1.6 \mathrm{~V}-1.8 \mathrm{~V}$). To take advantage of the POR, just tie the $\overline{M C L R}$ pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See Electrical Specifications for details.

The POR circuit does not produce internal RESET when VDD declines.
When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met.
For additional information, refer to Application Note AN607 "Power-up Trouble Shooting".

6.4.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 72 ms (nominal) timeout on power-up only, from POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as PWRT is active. The PWRT delay allows the VDD to rise to an acceptable level. A configuration bit, PWRTE can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-Up Time delay will vary from chip to chip and due to VDD, temperature and process variation. See DC parameters for details.

6.4.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-Up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over. This ensures that the crystal oscillator or resonator has started and stabilized.
The OST timeout is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

6.4.4 TIMEOUT SEQUENCE

On power-up, the timeout sequence is as follows: First PWRT timeout is invoked after POR has expired, then OST is activated. The total timeout will vary based on oscillator configuration and PWRTE bit status. For example, in RC mode with PWRTE bit erased (PWRT disabled), there will be no timeout at all. Figure 6-7, Figure 6-8 and Figure 6-9 depict timeout sequences.
Since the timeouts occur from the POR pulse, if $\overline{M C L R}$ is kept low long enough, the timeouts will expire. Then bringing MCLR high will begin execution immediately (see Figure 6-8). This is useful for testing purposes or to synchronize more than one PIC16C55X device operating in parallel.
Table 6-5 shows the RESET conditions for some special registers, while Table 6-6 shows the RESET conditions for all the registers.

6.4.5 POWER CONTROL/STATUS REGISTER (PCON)

Bit1 is POR (Power-on Reset). It is a ' 0 ' on Power-on Reset and unaffected otherwise. The user must write a ' 1 ' to this bit following a Power-on Reset. On a subsequent RESET if $\overline{\mathrm{POR}}$ is ' 0 ', it will indicate that a Poweron Reset must have occurred (VDD may have gone too low).

TABLE 6-3: TIMEOUT IN VARIOUS SITUATIONS

Oscillator Configuration$\quad \overline{\|c\|}$Power-up Wake-up from SLEEP			
	$\overline{\text { PWRTE }}=\mathbf{0}$	$\overline{\text { PWRTE }}=\mathbf{1}$	1024 TosC
RC	$72 \mathrm{~ms}+1024$ TosC	1024 TosC	-

TABLE 6-4: STATUS BITS AND THEIR SIGNIFICANCE

POR	TO	PD	
0	1	1	Power-on Reset
0	0	X	Illegal, $\overline{\mathrm{TO}}$ is set on $\overline{\mathrm{POR}}$
0	x	0	Illegal, $\overline{\mathrm{PD}}$ is set on $\overline{\mathrm{POR}}$
1	0	u	WDT Reset
1	0	0	WDT Wake-up
1	u	u	$\overline{\text { MCLR Reset during normal operation }}$
1	1	0	$\overline{\text { MCLR }}$ Reset during SLEEP

PIC16C55X

TABLE 6-5: INITIALIZATION CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	---- --0-
$\overline{\mathrm{MCLR}}$ Reset during normal operation	000h	000u uuuu	---- --u-
$\overline{\text { MCLR }}$ Reset during SLEEP	000h	0001 0uuu	---- --u-
WDT Reset	000h	0000 uuuu	---- --u-
WDT Wake-up	PC + 1	uuu0 0uuu	---- --u-
Interrupt Wake-up from SLEEP	$\mathrm{PC}+1^{(1)}$	uuu1 0uuu	---- --u-

Legend: $u=$ unchanged, $x=$ unknown, - = unimplemented bit, reads as ' 0 ', $q=$ value depends on condition.
Note 1: When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC+1.

TABLE 6-6: INITIALIZATION CONDITION FOR REGISTERS

Register	Address	Power-on Reset	MCLR Reset during normal \qquad operation MCLR Reset during SLEEP WDT Reset	Wake-up from SLEEP through interrupt Wake-up from SLEEP through WDT timeout
W	-	XXXX XXXX	uauu uauu	unuu unuu
INDF	00h	-	-	-
TMR0	01h	xxxx $x x x x$	uuuu uuuu	uuuu uuuu
PCL	02h	00000000	0000 0000	$P C+1^{(2)}$
STATUS	03h	0001 1xxx	$000 q q^{\text {quuu }}{ }^{(3)}$	uuuq quau ${ }^{(3)}$
FSR	04h	xxxx $x x x x$	uuuu uuuu	uuuu uuuu
PORTA	05h	---x $x x x x$	---u uuuu	---u uuuu
PORTB	06h		uuuu uuuu	uuuu uuuu
PORTC ${ }^{(4)}$	06h	XXXX XxXX	uuuu uuuu	unuu uuuu
PCLATH	OAh	---0 0000	---0 0000	---u uuuu
INTCON	OBh	0000 000x	0000 000u	unuu unuu ${ }^{(1)}$
OPTION	81h	11111111	11111111	uuau uuuu
TRISA	85h	---1 1111	---1 1111	---u uuuu
TRISB	86h	11111111	11111111	uaun uaun
TRISC ${ }^{(4)}$	86h	11111111	11111111	unuu unuu
PCON	8Eh	---- --0-	---- --u-	---- --u-

Legend: $u=$ unchanged, $x=$ unknown, - = unimplemented bit, reads as ' 0 ', $q=$ value depends on condition.
Note 1: One or more bits in INTCON will be affected (to cause wake-up).
2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).
3: See Table 6-5 for RESET value for specific condition.
4: PIC16C557 only.

PIC16C55X

FIGURE 6-7: TIMEOUT SEQUENCE ON POWER-UP ($\overline{M C L R}$ NOT TIED TO VDD): CASE 1

FIGURE 6-8: TIMEOUT SEQUENCE ON POWER-UP ($\overline{M C L R}$ NOT TIED TO VDD): CASE 2

FIGURE 6-9: TIMEOUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): CASE 3

FIGURE 6-10: EXTERNAL POWER-ON
RESET CIRCUIT (FOR
SLOW Vdd POWER-UP)

Note 1: External Power-on Reset circuit is required only if VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
2: $<40 \mathrm{k} \Omega$ is recommended to make sure that voltage drop across R does not violate the device's electrical specification.
3: $\quad \mathrm{R} 1=100 \Omega$ to $1 \mathrm{k} \Omega$ will limit any current flowing into MCLR from external capacitor C in the event of $\overline{M C L R} / V P P$ pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

6.5 Interrupts

The PIC16C55X has 3 sources of interrupt:

- External interrupt RBO/INT
- TMRO overflow interrupt
- PORTB change interrupts (pins RB7:RB4)

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.
A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on RESET.
The "Return from Interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables RB0/INT interrupts.
The INT pin interrupt, the RB port change interrupt and the TMRO overflow interrupt flags are contained in the INTCON register.
When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RBO/INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 6-12). The latency is the same for one or two cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.
2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

FIGURE 6-11: INTERRUPT LOGIC

6.5.1 RBO/INT INTERRUPT

An external interrupt on RBO/INT pin is edge triggered: either rising if INTEDG bit (OPTION<6>) is set, or falling if INTEDG bit is clear. When a valid edge appears on the RBO/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before reenabling this interrupt. The RBO/INT interrupt can wake-up the processor from SLEEP, if the INTE bit was set prior to going into SLEEP. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See Section 6.8 for details on SLEEP and Figure 6-14 for timing of wakeup from SLEEP through RB0/INT interrupt.

6.5.2 TMRO INTERRUPT

An overflow (FFh \rightarrow OOh) in the TMRO register will set the TOIF (INTCON<2>) bit. The interrupt can be enabled/disabled by setting/clearing TOIE (INTCON<5>) bit. For operation of the Timer0 module, see Section 7.0.

6.5.3 PORTB INTERRUPT

An input change on PORTB $<7: 4>$ sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<4>) bit. For operation of PORTB (Section 5.2).

Note: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RBIF interrupt flag may get set.

FIGURE 6-12: INT PIN INTERRUPT TIMING

6.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and STATUS register). This will have to be implemented in software.
Example 6-1 stores and restores the STATUS and W registers. The user register, W_TEMP, must be defined in both banks and must be defined at the same offset from the bank base address (i.e., W _TEMP is defined at 0×20 in Bank 0 and it must also be defined at $0 \times A 0$ in Bank 1). The user register, STATUS_TEMP, must be defined in Bank 0. The Example 6-1:

- Stores the W register
- Stores the STATUS register in Bank 0
- Executes the ISR code
- Restores the STATUS (and bank select bit register)
- Restores the W register

EXAMPLE 6-1:	SAVING THE STATUS AND W REGISTERS IN RAM
MOVWF W_TEMP	;copy W to TEMP ;register, could be in ;either bank ;swap STATUS to be ;saved into W ;change to bank0 ;regardless of
BWAPF STATUS, W	

EXAMPLE 6-1: SAVING THE STATUS AND W REGISTERS IN RAM

6.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT timeout generates a device RESET. If the device is in SLEEP mode, a WDT timeout causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration bit WDTE as clear (Section 6.1).

6.7.1 WDT PERIOD

The WDT has a nominal timeout period of 18 ms , (with no prescaler). The timeout periods vary with temperature, VDD and process variations from part-to-part (see DC specs). If longer timeout periods are desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, timeout periods up to 2.3 seconds can be realized.
The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET.
The $\overline{T O}$ bit in the STATUS register will be cleared upon a Watchdog Timer timeout.

6.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT timeout occurs.

PIC16C55X

FIGURE 6-13: WATCHDOG TIMER BLOCK DIAGRAM

Note 1: TOSE, TOCS, PSA, PS0-PS2 are bits in the OPTION register.

TABLE 6-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other RESETS
2007 h	Config. bits	-	Reserved	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0		
81 h	OPTION	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	11111111	11111111

Legend: $x=$ unknown, $u=$ unchanged, $q=$ value depends on condition, - = unimplemented, read as ' 0 '. Shaded cells are not used by the Watchdog Timer.

6.8 Power-Down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.
If enabled, the Watchdog Timer will be cleared but keeps running, the $\overline{\mathrm{PD}}$ bit in the STATUS register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low, or hiimpedance).
For lowest current consumption in this mode, all I/O pins should be either at VDD, or Vss, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered. The $\overline{M C L R}$ pin must be at a logic high level (VIHMC).

Note: It should be noted that a RESET generated by a WDT timeout does not drive $\overline{\text { MCLR }}$ pin low.

6.8.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

1. External RESET input on $\overline{M C L R}$ pin
2. Watchdog Timer Wake-up (if WDT was enabled)
3. Interrupt from RBO/INT pin or RB Port change

The first event will cause a device RESET. The two latter events are considered a continuation of program execution. The $\overline{\mathrm{TO}}$ and $\overline{\mathrm{PD}}$ bits in the STATUS register can be used to determine the cause of device RESET. $\overline{P D}$ bit, which is set on power-up is cleared when SLEEP is invoked. TO bit is cleared if WDT Wake-up occurred.
When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from SLEEP. The SLEEP instruction is completely executed.

The WDT is cleared when the device wakes-up from SLEEP, regardless of the source of wake-up.

FIGURE 6-14: WAKE-UP FROM SLEEP THROUGH INTERRUPT

Note 1: XT, HS or LP Oscillator mode assumed.
2: ToST = 1024Tosc (drawing not to scale). This delay will not be there for RC osc mode.
3: $\mathrm{GIE}=$ ' 1 ' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If $\mathrm{GIE}=$ ' 0 ', execution will continue in-line.
4: CLKOUT is not available in these osc modes, but shown here for timing reference.

6.9 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.
Note: Microchip does not recommend code protecting windowed devices.

6.10 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify.

6.11 In-Circuit Serial Programming ${ }^{\text {TM }}$

The PIC16C55X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.
The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low while raising the $\overline{M C L R}$ (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After RESET, to place the device into Programming/ Verify mode, the program counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to the PIC16C6X/7X Programming Specifications (Literature \#DS30228).
A typical in-circuit serial programming connection is shown in Figure 6-15.

FIGURE 6-15: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

7.0 TIMERO MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.
Timer mode is selected by clearing the TOCS bit (OPTION<5>). In Timer mode, the TMR0 will increment every instruction cycle (without prescaler). If Timer0 is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to TMRO.

Counter mode is selected by setting the TOCS bit. In this mode Timer0 will increment either on every rising or falling edge of pin RA4/TOCKI. The incrementing edge is determined by the source edge (TOSE) control
bit (OPTION<4>). Clearing the TOSE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 7.2.
The prescaler is shared between the Timer0 module and the Watchdog Timer. The prescaler assignment is controlled in software by the control bit PSA ($\mathrm{OPTION}<3>$). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale value of 1:2, 1:4, ..., 1:256 are selectable. Section 7.3 details the operation of the prescaler.

7.1 TIMERO Interrupt

Timer0 interrupt is generated when the TMRO register timer/counter overflows from FFh to 00h. This overflow sets the TOIF bit. The interrupt can be masked by clearing the TOIE bit (INTCON<5>). The TOIF bit (INTCON<2>) must be cleared in software by the Timer0 module interrupt service routine before reenabling this interrupt. The Timer0 interrupt cannot wake the processor from SLEEP since the timer is shut off during SLEEP. See Figure 7-4 for Timer0 interrupt timing.

FIGURE 7-1: TIMER0 BLOCK DIAGRAM

Note 1: Bits, TOSE, TOCS, PS2, PS1, PSO and PSA are located in the OPTION register.
2: The prescaler is shared with Watchdog Timer (Figure 7-6)

FIGURE 7-2: TIMER0 (TMR0) TIMING: INTERNAL CLOCKINO PRESCALER

FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCKIPRESCALE 1:2

FIGURE 7-4: TIMER0 INTERRUPT TIMING

7.2 Using Timer0 with External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.2.1 EXTERNAL CLOCK SYNCHRONIZATION

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-5). Therefore, it is necessary for TOCKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns . Refer to parameters 40,41 and 42 in the electrical specification of the desired device.

7.2.2 TIMERO INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the TMRO is actually incremented. Figure 7-5 shows the delay from the external clock edge to the timer incrementing.

FIGURE 7-5: TIMER0 TIMING WITH EXTERNAL CLOCK

Note 1: Delay from clock input change to Timer0 increment is 3 Tosc to 7 Tosc. (Duration of $\mathrm{Q}=\mathrm{Tosc}$).
Therefore, the error in measuring the interval between two edges on Timer0 input $= \pm 4$ Tosc max.
2: External clock if no prescaler selected, prescaler output otherwise.
3: The arrows indicate the points in time where sampling occurs.

7.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 7-6). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note: There is only one prescaler available which is mutually exclusive between the TimerO module and the Watchdog Timer. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The PSA and PS2:PS0 bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.
When assigned to the Timer0 module, all instructions writing to the TMRO register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

FIGURE 7-6:
BLOCK DIAGRAM OF THE TIMERO/WDT PRESCALER

Note 1: TOSE, TOCS, PSA, PSO-PS2 are bits in the OPTION register.

7.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on the fly" during program execution). To avoid an unintended device RESET, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to WDT. Lines 5-7 are required only if the desired postscaler rate is 1:1 $(\mathrm{PS}<2: 0>=000)$ or 1:2 $(\mathrm{PS}<2: 0>=001)$.

EXAMPLE 7-1: CHANGING PRESCALER (TIMERO \rightarrow WDT)

BCF	STATUS, RPO	;Skip if already in ; Bank 0 CLRWDT Clear WDT
CLRF	TMRO	; Clear TMRO \& Prescaler
BSF	STATUS, RPO	; Bank 1
MOVLW	'00101111'b	;These 3 lines (5, 6, 7)
MOVWF	OPTION	; Are required only if
		;Desired PS<2:0> are
		; CLRWDT 000 or 001
MOVLW	'00101xxx' b	; Set Postscaler to
MOVWF	OPTION	; Desired WDT rate
BCF	STATUS, RPO	; Return to Bank 0

To change prescaler from the WDT to the TMRO module use the sequence shown in Example 7-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 7-2: CHANGING PRESCALER (WDT \rightarrow TIMERO)

CLRWDT		;Clear WDT and ;prescaler
BSF	STATUS, RP0	
MOVLW	$\mathrm{b}^{\prime} \times x \times x 0 x x{ }^{\prime}$;Select TMR0, new ;prescale value and ;clock source
MOVWF	OPTION	
BCF	STATUS, RP0	

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMERO

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other RESETS
01h	TMR0	Timer0 module's register								xxxx xxxx	unuu uuuu
0Bh/8Bh	INTCON	GIE	Reserved	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000x
81h	OPTION	$\overline{\text { RBPU }}$	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	11111111	11111111
85h	TRISA	-	-	-	TRISA4	TRISA3	TRISA2	TRISA1	TRISAO	---1 1111	---1 1111

Legend: - = Unimplemented locations, read as '0',
Note 1: Shaded bits are not used by TMRO module.

PIC16C55X

NOTES:

8.0 INSTRUCTION SET SUMMARY

Each PIC16C55X instruction is a 14 -bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16C55X instruction set summary in Table 8-2 lists byte-oriented, bitoriented, and literal and control operations. Table 81 shows the opcode field descriptions.
For byte-oriented instructions, ' f ' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.
The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If ' d ' is one, the result is placed in the file register specified in the instruction.
For bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.
For literal and control operations, ' k ' represents an eight or eleven bit constant or literal value.

TABLE 8-1: OPCODE FIELD

 DESCRIPTIONS| Field | Description |
| :---: | :---: |
| f | Register file address (0x00 to 0x7F) |
| W | Working register (accumulator) |
| b | Bit address within an 8-bit file register |
| k | Literal field, constant data or label |
| X | Don't care location (= 0 or 1)
 The assembler will generate code with $x=0$. It is the recommended form of use for compatibility with all Microchip software tools. |
| d | Destination select; $\mathrm{d}=0$: store result in W, $d=1$: store result in file register f.
 Default is $\mathrm{d}=1$ |
| label | Label name |
| TOS | Top of Stack |
| PC | Program Counter |
| PCLATH | Program Counter High Latch |
| GIE | Global Interrupt Enable bit |
| WDT | Watchdog Timer/Counter |
| TO | Timeout bit |
| PD | Power-down bit |
| dest | Destination either the W register or the specified register file location |
| [] | Options |
| () | Contents |
| \rightarrow | Assigned to |
| < > | Register bit field |
| E | In the set of |
| italics | User defined term (font is courier) |

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz , the normal instruction execution time is $1 \mu \mathrm{~s}$. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is $2 \mu \mathrm{~s}$.
Table 8-1 lists the instructions recognized by the MPASM ${ }^{\text {TM }}$ assembler.
Figure 8-1 shows the three general formats that the instructions can have.

Note: To maintain upward compatibility with future PIC^{\circledR} MCU products, do not use the OPTION and TRIS instructions.
All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.
FIGURE 8-1: GENERAL FORMAT FOR INSTRUCTIONS
Byte-oriented file register operations

13	8		7
OPCODE	d	fILE \#)	

$\mathrm{d}=0$ for destination W
$d=1$ for destination f
$\mathrm{f}=7$-bit file register address
Bit-oriented file register operations

$b=3$-bit bit address
$f=7$-bit file register address

Literal and control operations
General

13	8	0
OPCODE	k (literal)	

$$
\text { k }=8 \text {-bit immediate value }
$$

CALL and GOTO instructions only

$\mathrm{k}=11$-bit immediate value

TABLE 8-2: PIC16C55X INSTRUCTION SET

Mnemonic, Operands		Description	Cycles	14-Bit Opcode				Status Affected	Notes	
		MSb				LSb				
BYTE-ORIENTED FILE REGISTER OPERATIONS										
ADDWF	f, d		Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2	
CLRW	-	Clear W	1	00	0001	0000	0011	Z		
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2	
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2	
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2	
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3	
IORWF	$f, \mathrm{~d}$	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2	
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2	
MOVWF	f	Move W to f	1	00	0000	lfff	ffff			
NOP	-	No Operation	1	00	0000	0xx0	0000			
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	C	1,2	
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	1,2	
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC, Z	1,2	
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2	
BIT-ORIENTED FILE REGISTER OPERATIONS										
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2	
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2	
BTFSC	$f, \mathrm{~b}$	Bit Test f, Skip if Clear	1(2)	01	10bb	bfff	ffff		3	
BTFSS	f, b	Bit Test f, Skip if Set	1(2)	01	11bb	bfff	ffff		3	
LITERAL AND CONTROL OPERATIONS										
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z		
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z		
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk			
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	$\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$		
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk			
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z		
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk			
RETFIE	-	Return from interrupt	2	00	0000	0000	1001			
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk			
RETURN	-	Return from Subroutine	2	00	0000	0000	1000			
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	$\overline{\mathrm{TO}}, \overline{\mathrm{PD}}$		
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C, DC, Z		
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z		

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is ' 1 ' for a pin configured as input and is driven low by an external device, the data will be written back with a ' 0 '.
2: If this instruction is executed on the TMRO register (and, where applicable, $d=1$), the prescaler will be cleared if assigned to the TimerO Module.
3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

8.1 Instruction Descriptions

ADDWF	Add W and f			
Syntax:	[label] ADDWF f,d			
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$			
Operation:	$(\mathrm{W})+(\mathrm{f}) \rightarrow$ (dest)			
Status Affected:	C, DC, Z			
Encoding:	00	0111	dfff	ffff
Description:	Add the contents of the W register with register ' f '. If ' d ' is 0 the result is stored in the W register. If ' d ' is 1 the result is stored back in register ' f '.			

Words:	1		
Cycles:	1		
Example	ADDWF	FSR,	0

Before Instruction

$$
\begin{array}{ll}
\mathrm{W} & =0 \times 17 \\
\mathrm{FSR} & =0 \times C 2
\end{array}
$$

After Instruction

$$
\begin{array}{ll}
\mathrm{W}=0 \times D 9 \\
\mathrm{FSR}=0 \times C 2
\end{array}
$$

ANDWF AND W with f
Syntax:
Operands: $\quad 0 \leq f \leq 127$
$d \in[0,1]$
Operation: \quad (W).AND. (f) \rightarrow (dest)
Status Affected: Z
Encoding:
Description:

00	0101	dfff	ffff

AND the W register with register 'f'. If
'd' is 0 the result is stored in the W
register. If 'd' is 1 the result is stored
back in register ' f '.

Words: 1

Cycles:
Example ANDWF FSR, 1
Before Instruction

$$
\begin{aligned}
\mathrm{W} & =0 \times 17 \\
\mathrm{FSR} & =0 \times \mathrm{C} 2
\end{aligned}
$$

After Instruction

```
W = 0\times17
```

$F S R=0 \times 02$

BTFSC	Bit Test, Skip if Clear			
Syntax:	[label] BTFSC f,b			
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & 0 \leq b \leq 7 \end{aligned}$			
Operation:	skip if ($\mathrm{f}<\mathrm{b}>$) $=0$			
Status Affected:	None			
Encoding:	01	10bb	bfff	ffff
Description:	If bit 'b' in register ' f ' is ' 0 ' then the next instruction is skipped. If bit ' b ' is '0' then the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example	HERE FALSE TRUE	BTFSC	$\begin{aligned} & \text { FLAG,1 } \\ & \text { PROCESS_CODE } \end{aligned}$	
		GOTO		
		-		

Before Instruction
PC = address HERE
After Instruction
if FLAG<1> = 0,
$\mathrm{PC}=$ address TRUE
if $\mathrm{FLAG}<1>=1$,
$\mathrm{PC}=$ address FALSE

CLRW	Clear W		
Syntax:	[label] CLRW		
Operands:	None		
Operation:	$\begin{aligned} & 00 \mathrm{~h} \rightarrow(\mathrm{~W}) \\ & 1 \rightarrow \mathrm{Z} \end{aligned}$		
Status Affected:	Z		
Encoding:	00 0001	0000	0011
Description:	W register is cleared. Zero bit (Z) is set.		
Words:	1		
Cycles:	1		
Example	CLRW		
	Before Instruction		
	$\mathrm{W}=0 \times 5 \mathrm{~A}$		
	After Instruction		
	$\mathrm{W}=0 \times 00$		
	$z=1$		

COMF	Complement f		
Syntax:	[label] COMF f,d		
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$		
Operation:	(f) \rightarrow (dest)		
Status Affected:	Z		
Encoding:	$00 \quad 1001$	dfff	ffff
Description:	The contents of register ' f ' are complemented. If 'd' is 0 the result is stored in W. If 'd' is 1 the result is stored back in register ' f '.		
Words:	1		
Cycles:	1		
Example	COMF REG1, 0		
	Before Instruction		
	REG1 $=0 \times 13$		
	After Instruction		
	REG1 $=0 \times 13$		
	$\mathrm{W}=$		

Before Instruction

$$
\begin{array}{ll}
\text { RESULT } & =0 \times 13 \\
\mathrm{~W} & =0 \times 91
\end{array}
$$

After Instruction

$$
\begin{aligned}
\text { RESULT } & =0 \times 13 \\
\mathrm{~W} & =0 \times 93 \\
\mathrm{Z} & =1
\end{aligned}
$$

The eight bit literal ' k ' is loaded into W register. The don't cares will assemble as 0's.

Words:
1
Cycles:
Example

1
MOVLW 0x5A
After Instruction

$$
\mathrm{W}=0 \times 5 \mathrm{~A}
$$

NOP			
No Operation			
Syntax:	[label] NOP		
Operands:	None		
Operation:	No operation		
Status Affected:	None		
Encoding:	00	0000	$0 \times x 0$
	0000		
Description:	No operation.		
Words:	1		
Cycles:	1		
Example	NOP		

OPTION	Load Option Register		
Syntax:	[label] OPTION		
Operands:	None		
Operation:	(W) \rightarrow OPTION		
Status Affected:	None		
Encoding:	$00 \quad 0000$	0110	0010
Description:	The contents of the W register are loaded in the OPTION register. This instruction is supported for code compatibility with PIC16C5X products. Since OPTION is a readable/writable register, the user can directly address it.		
Words:	1		
Cycles:	1		
Example			
	To maintain upward compatibility with future PIC MCU products, do not use this instruction.		

RETFIE	Return from Interrupt		
Syntax:	[label] RETFIE		
Operands:	None		
Operation:	$\begin{aligned} & \mathrm{TOS} \rightarrow \mathrm{PC}, \\ & 1 \rightarrow \mathrm{GIE} \end{aligned}$		
Status Affected:	None		
Encoding:	00 0000	0000	1001
Description:	Return from Interrupt. Stack is POPed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a two-cycle instruction.		
Words:	1		
Cycles:	2		
Example	RETFIE		

After Interrupt
$\mathrm{PC}=\mathrm{TOS}$
GIE $=1$

RETURN	Return from Subroutine		
Syntax:	[label] RETURN		
Operands:	None		
Operation:	TOS \rightarrow PC		
Status Affected:	None		
Encoding:	000000	0000	1000
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.		
Words:	1		
Cycles:	2		
Example	RETURN		
	After Interrupt		

RLF	Rotate Left fthrough Carry			
Syntax:	[label] RLF f,d			
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$			
Operation:	See description below			
Status Affected:	C			
Encoding:	00	1101	dfff	ffff

Description: The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in the W register. If ' d ' is 1 the result is stored back in register ' f '.

Words: 1
Cycles: 1
Example
RLF REG1,0
Before Instruction
REG1 = 11100110
$\mathrm{C}=0$
After Instruction

| REG1 | $=1110$ | 0110 |
| :--- | :--- | :--- | :--- |
| W | $=1100$ | 1100 |
| C | $=1$ | |

SUBLW	Subtract W from Literal
Syntax:	[label] SUBLW k
Operands:	$0 \leq \mathrm{k} \leq 255$
Operation:	$\mathrm{k}-(\mathrm{W}) \rightarrow(\mathrm{W})$
Status Affected:	C, DC, Z
Encoding:	11 110 x kkkk kkkk
Description:	The W register is subtracted (2's complement method) from the eight bit literal ' k . The result is placed in the W register.
Words:	1
Cycles:	1
Example 1:	SUBLW 0x02
Before Instruction	
	$W=1$
	$\mathrm{C}=$?

After Instruction

$$
\begin{aligned}
& \mathrm{W}=1 \\
& \mathrm{C}=1 ; \text { result is positive }
\end{aligned}
$$

Example 2: Before Instruction

$$
\begin{aligned}
& W=2 \\
& C=?
\end{aligned}
$$

After Instruction
$\mathrm{W}=0$
$\mathrm{C}=1$; result is zero

Example 3: Before Instruction
$\mathrm{W}=3$
$\mathrm{C}=?$

After Instruction
$\mathrm{W}=0 \times \mathrm{FF}$
$\mathrm{C}=0$; result is nega-
tive

SUBWF	Subtract W from f	
Syntax:	[label] SUBWF f,d	
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$	
Operation:	(f) - (W) \rightarrow (dest)	
Status Affected:	C, DC, Z	
Encoding:	$00 \quad 0010$	dfff \quad ffff
Description:	Subtract (2's complement method) W register from register ' f '. If ' 'd' is 0 the result is stored in the W register. If ' d ' is 1 the result is stored back in register ' f '.	
Words:	1	
Cycles:	1	
Example 1:	SUBWF REG1,1	
	Before Instruction	
	REG1 $=3$	
	$\mathrm{W}=2$	
	$\mathrm{C}=$?	

Example 2: Before Instruction

$$
\begin{aligned}
& \text { REG1 }=2 \\
& \mathrm{~W}=2 \\
& \mathrm{C}=?
\end{aligned}
$$

After Instruction

REG1	$=0$
W	$=2$
C	$=1$; result is zero

Example 3: Before Instruction

$$
\begin{aligned}
& \text { REG1 }=1 \\
& \mathrm{~W}=2 \\
& \mathrm{C}=?
\end{aligned}
$$

After Instruction

$$
\begin{aligned}
& \text { REG1 }=0 \times F F \\
& \mathrm{~W}=2 \\
& \mathrm{C}=0 ; \text { result is negative }
\end{aligned}
$$

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$
Operation:	$\begin{aligned} & (\mathrm{f}<3: 0>) \rightarrow(\text { dest }<7: 4>), \\ & (\mathrm{f}<7: 4>) \rightarrow(\text { dest }<3: 0>) \end{aligned}$
Status Affected:	None
Encoding:	
Description:	The upper and lower nibbles of register ' f ' are exchanged. If ' d ' is 0 the result is placed in W register. If 'd' is 1 the result is placed in register ' f '.
Words:	1
Cycles:	1
Example	SWAPF REG, 0
	Before Instruction
	REG1 = 0xA5
	After Instruction
	REG1 = 0xA5
	$\mathrm{W}=0 \times 5 \mathrm{~A}$

XORLW	Exclusive OR Literal with W		
Syntax:	[label] XORLW k		
Operands:	$0 \leq \mathrm{k} \leq 255$		
Operation:	(W).XOR. $\mathrm{k} \rightarrow(\mathrm{W})$		
Status Affected:	Z		
Encoding:	$11 \quad 1010$	kkkk	kkkk
Description:	The contents of the W register are XOR'ed with the eight bit literal ' k '. The result is placed in the W register.		
Words:	1		
Cycles:	1		
Example:	XORLW 0xAF		
	Before Instruction		
	$\mathrm{W}=0 \times \mathrm{B} 5$		
	After Instruction		
	$\mathrm{W}=0 \times 1 \mathrm{~A}$		
XORWF	Exclusive OR W with f		
Syntax:	[label] XORWF f,d		
Operands:	$\begin{aligned} & 0 \leq f \leq 127 \\ & d \in[0,1] \end{aligned}$		
Operation:	(W) .XOR. (f) \rightarrow (dest)		
Status Affected:	Z		
Encoding:	00 0110	dfff	ffff
Description:	Exclusive OR the contents of the W register with register ' f '. If 'd' is 0 the result is stored in the W register. If ' d ' is 1 the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example	XORWF REG	1	
	Before Instruction		
	REG $=0 \times A F$		
	$\mathrm{W}=0 \times B 5$		
	After Instruction		
	REG $=0 \times 1 \mathrm{~A}$		
	$\mathrm{W}=0 \times B 5$		

NOTES:

9.0 DEVELOPMENT SUPPORT

The PIC^{\circledR} microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
- MPLAB ${ }^{\circledR}$ IDE Software
- Assemblers/Compilers/Linkers
- MPASM ${ }^{\text {™ }}$ Assembler
- MPLAB C17 and MPLAB C18 C Compilers
- MPLINK ${ }^{\text {TM }}$ Object Linker/ MPLIB ${ }^{\text {M }}$ Object Librarian
- Simulators
- MPLAB SIM Software Simulator
- Emulators
- MPLAB ICE 2000 In-Circuit Emulator
- ICEPIC™ In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD
- Device Programmers
- PRO MATE ${ }^{\circledR}$ II Universal Device Programmer
- PICSTART ${ }^{\circledR}$ Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
- PICDEM ${ }^{\text {™ }} 1$ Demonstration Board
- PICDEM 2 Demonstration Board
- PICDEM 3 Demonstration Board
- PICDEM 17 Demonstration Board
- KeeLoq ${ }^{\circledR}$ Demonstration Board

9.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows ${ }^{\circledR}$-based application that contains:

- An interface to debugging tools
- simulator
- programmer (sold separately)
- emulator (sold separately)
- in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C’)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
- source files
- absolute listing file
- machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

9.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.
The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel ${ }^{\circledR}$ standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.
The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

9.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.
For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

9.4 MPLINK Object LinkerI
 MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.
The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.
The MPLIB object librarian features include:
- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

9.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multi-project software development tool.

9.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.
The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily re configured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PIC microcontrollers.
The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft ${ }^{\circledR}$ Windows environment were chosen to best make these features available to you, the end user.

9.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

9.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PIC MCUs and can be used to develop for this and other PIC microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming ${ }^{\text {TM }}$ protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time.

9.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in Stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.
The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In Stand-alone mode, the PRO MATE II device programmer can read, verify, or program PIC devices. It can also set code protection in this mode.

9.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.
The PICSTART Plus development programmer supports all PIC devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

9.11 PICDEM 1 Low Cost PIC MCU Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

9.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the $I^{2} \mathrm{C}^{\text {TM }}$ bus and separate headers for connection to an LCD module and a keypad.

9.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

9.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5 -inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

9.15 KeeLoq Evaluation and Programming Tools

KeeLoq evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

TABLE 9-1: DEVELOPMENT TOOLS FROM MICROCHIP

NOTES:

10.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings \dagger

Ambient Temperature under bias... -40° to $+125^{\circ} \mathrm{C}$
Storage Temperature .. - 65° to $+150^{\circ} \mathrm{C}$
Voltage on any pin with respect to Vss (except VDD and $\overline{\mathrm{MCLR}}$) ...-0.6V to VDD +0.6V
Voltage on VDD with respect to Vss ... 0 to +7.5V
Voltage on $\overline{M C L R}$ with respect to Vss... 0 to +14 V
Total power Dissipation (Note 1)...1.0W
Maximum Current out of Vss pin ... 300 mA
Maximum Current into VDD pin ... 250 mA
Input Clamp Current, IIK (VI < 0 or VI > VDD) ... $\pm 20 \mathrm{~mA}$
Output Clamp Current, Iok (V0 < 0 or V0 > VDD)... $\pm 20 \mathrm{~mA}$
Maximum Output Current sunk by any I/O pin.. 25 mA
Maximum Output Current sourced by any I/O pin.. 25 mA
Maximum Current sunk by PORTA, PORTB and PORTC ... 200 mA
Maximum Current sourced by PORTA, PORTB and PORTC .. 200 mA
Note 1: Power dissipation is calculated as follows: $\mathrm{PDIS}=\mathrm{VDD} \times\left\{\mathrm{IDD}-\sum \mathrm{IOH}\right\}+\sum\{(\mathrm{VDD}-\mathrm{VOH}) \times \mathrm{IOH}\}+\sum(\mathrm{VOl} \times \mathrm{IOL})$
\dagger NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16C55X

FIGURE 10-1: \quad VOLTAGE-FREQUENCY GRAPH, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$ (COMMERCIAL TEMPS)

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

FIGURE 10-2: VOLTAGE-FREQUENCY GRAPH, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}}<\mathbf{0}^{\circ} \mathrm{C},+\mathbf{7 0 ^ { \circ }} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ (OUTSIDE OF COMMERCIAL TEMPS)

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

FIGURE 10-3: \quad VOLTAGE-FREQUENCY GRAPH, $\mathbf{0}^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+\mathbf{8 5}^{\circ} \mathrm{C}$

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

FIGURE 10-4: PIC16LC554/557/558 VOLTAGE-FREQUENCY GRAPH, $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 0^{\circ} \mathrm{C}$

Note 1: The shaded region indicates the permissible combinations of voltage and frequency.
2: The maximum rated speed of the part limits the permissible combinations of voltage and frequency. Please reference the Product Identification System section for the maximum rated speed of the parts.

10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Characteristics			Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for industrial and $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for commercial and $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for extended				
Param No.	Sym	Characteristic	Min	Typ \dagger	Max	Units	Conditions
	VDD	Supply Voltage					
D001		16LC55X	$\begin{aligned} & 3.0 \\ & 2.5 \end{aligned}$	-	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	V	XT and RC osc configuration LP osc configuration
$\begin{aligned} & \text { D001 } \\ & \text { D001A } \end{aligned}$		16C55X	$\begin{aligned} & 3.0 \\ & 4.5 \end{aligned}$	—	$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	XT, RC and LP osc configuration HS osc configuration
D002	VDR	RAM Data Retention Voltage ${ }^{(1)}$	-	1.5*	-	V	Device in SLEEP mode
D003	VPOR	Vdd Start Voltage to ensure Power-on Reset	-	Vss	-	V	See Section 6.4, Power-on Reset for details
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	-	-	V/ms	See Section 6.4, Power-on Reset for details
	IDD	Supply Current ${ }^{(2)}$					
$\begin{aligned} & \text { D010 } \\ & \text { D010A } \end{aligned}$		16LC55X	$\begin{aligned} & - \\ & - \end{aligned}$	1.4 26	2.5 53	mA $\mu \mathrm{A}$	XT and RC osc configuration Fosc $=2.0 \mathrm{MHz}, \mathrm{VDD}=3.0 \mathrm{~V}$, WDT disabled ${ }^{(4)}$ LP osc configuration Fosc $=32 \mathrm{kHz}$, VDD $=3.0 \mathrm{~V}$, WDT disabled
D010		16C55X	-	1.8	3.3	mA	XT and RC osc configuration Fosc $=4 \mathrm{MHz}, \mathrm{VDD}=5.5 \mathrm{~V}$, WDT disabled ${ }^{(4)}$
D010A			-	35	70	$\mu \mathrm{A}$	LP osc configuration, PIC16C55X-04 only Fosc $=32 \mathrm{kHz}, \mathrm{VDD}=4.0 \mathrm{~V}$, WDT disabled
D013			-	9.0	20	mA	HS osc configuration Fosc $=20 \mathrm{MHz}, \mathrm{VDD}=5.5 \mathrm{~V}$, WDT disabled

* These parameters are characterized but not tested.
\dagger Data is "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$, unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
The test conditions for all IDD measurements in active Operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD, MCLR = VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or Vss.
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = Vdd/2RExt (mA) with RExt in $\mathrm{k} \Omega$.
5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
10.1 DC Characteristics: PIC16C55X-04 (Commercial, Industrial, Extended) PIC16C55X-20 (Commercial, Industrial, Extended) HCS1365-04 (Commercial, Industrial, Extended)

DC Cha	cterist		Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for industrial and $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for commercial and $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for extended				
Param No.	Sym	Characteristic	Min	Typ \dagger	Max	Units	Conditions
D020	IPD	Power-Down Current ${ }^{(3)}$					
		16LC55X	-	0.7	2	$\mu \mathrm{A}$	VDD $=3.0 \mathrm{~V}$, WDT disabled
		16C55X	-	1.0	$\begin{aligned} & 2.5 \\ & 15 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	VDD $=4.0 \mathrm{~V}$, WDT disabled $\left(+85^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
	SIWDT	WDT Current ${ }^{(5)}$					
		16LC55X	-	6.0	15	$\mu \mathrm{A}$	$\mathrm{VDD}=3.0 \mathrm{~V}$
		16C55X	-	6.0	20	$\mu \mathrm{A}$	$\begin{aligned} & \text { VDD }=4.0 \mathrm{~V} \\ & \left(+85^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right) \end{aligned}$

* These parameters are characterized but not tested.
\dagger Data is "Typ" column is at $5 \mathrm{~V}, 25^{\circ} \mathrm{C}$, unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.
The test conditions for all IDD measurements in active Operation mode are:
OSC1 = external square wave, from rail to rail; all I/O pins configured as input, pulled to VDD, $\overline{M C L R}=$ VDD; WDT enabled/disabled as specified.
3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins configured as input and tied to VDD or Vss.
4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in $\mathrm{k} \Omega$.
5: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.

10.2 DC Characteristics: PIC16C55X (Commercial, Industrial, Extended) PIC16LC55X(Commercial, Industrial, Extended)

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C55X be driven with external clock in RC mode.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as coming out of the pin.

10.2 DC Characteristics: PIC16C55X (Commercial, Industrial, Extended)

 PIC16LC55X(Commercial, Industrial, Extended) (Continued)| DC Characteristics | | | Standard Operating Conditions (unless otherwise stated)
 Operating temperature $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+85^{\circ} \mathrm{C}$ for industrial and $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+70^{\circ} \mathrm{C}$ for commercial and $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ for automotive
 Operating voltage VDD range as described in DC spec Table 10-1 | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Param. No. \|D092 | Sym | Characteristic
 OSC2/CLKOUT
 (RC only) | | Typ \dagger
 -
 _ | $\begin{gathered} \text { Max } \\ - \\ - \end{gathered}$ | $\begin{gathered} \text { Unit } \\ v \\ v \\ v \end{gathered}$ | Conditions $\begin{aligned} & \mathrm{IOH}=-2.5 \mathrm{~mA}, \\ & \mathrm{VDD}=4.5 \mathrm{~V},+125^{\circ} \mathrm{C} \\ & \mathrm{IOH}=-1.3 \mathrm{~mA}, \mathrm{VDD}=4.5 \mathrm{~V},-40^{\circ} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \mathrm{IOH}=-1.0 \mathrm{~mA}, \\ & \mathrm{VDD}=4.5 \mathrm{~V},+125^{\circ} \mathrm{C} \end{aligned}$ |
| * | Vod | Open-Drain High Voltage | | | 10* | V | RA4 pin |
| | | Capacitive Loading Specs on Output Pins | | | | | |
| D100 | $\begin{gathered} \text { cosc } \\ 2 \end{gathered}$ | OSC2 pin | | | 15 | pF | In XT, HS and LP modes when external clock used to drive OSC1. |
| D101 | Cıo | All I/O pins/OSC2 (in RC mode) | | | 50 | pF | |

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC16C55X be driven with external clock in RC mode.
2: The leakage current on the $\overline{M C L R}$ pin is strongly dependent on applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
3: Negative current is defined as coming out of the pin.

PIC16C55X

10.3 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

1. TppS 2 ppS
2. TppS

T			
F	Frequency	T	Time

Lowercase subscripts (pp) and their meanings:

pp			
ck	CLKOUT	os	OSC1
io	I/O port	t0	TOCKI
mc	$\overline{\text { MCLR }}$		

Uppercase letters and their meanings:

S			
F	Fall	P	Period
H	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance

FIGURE 10-5: LOAD CONDITIONS

10.4 Timing Diagrams and Specifications

FIGURE 10-6: EXTERNAL CLOCK TIMING

TABLE 10-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Typ \dagger	Max	Units	Conditions
	Fos	External CLKIN Frequency ${ }^{(1)}$	$\begin{aligned} & \mathrm{DC} \\ & \mathrm{DC} \\ & \mathrm{DC} \\ & \hline \end{aligned}$	$-$	$\begin{gathered} 4 \\ 20 \\ 200 \end{gathered}$	$\begin{aligned} & \hline \hline \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{kHz} \\ & \hline \end{aligned}$	XT and RC osc mode, VDD=5.0V HS osc mode LP osc mode
		Oscillator Frequency ${ }^{(1)}$	$\begin{gathered} \text { DC } \\ 0.1 \\ 1 \\ \text { DC } \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 4 \\ 4 \\ 20 \\ 200 \end{gathered}$	MHz MHz MHz kHz	RC osc mode, VDD=5.0V XT osc mode HS osc mode LP osc mode
1	Tosc	External CLKIN Period ${ }^{(1)}$	$\begin{gathered} 250 \\ 50 \\ 5 \end{gathered}$	-	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mu \mathrm{~s} \end{aligned}$	XT and RC osc mode HS osc mode LP osc mode
		Oscillator Period ${ }^{(1)}$	$\begin{gathered} 250 \\ 250 \\ 50 \\ 5 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} - \\ 10,000 \\ 1,000 \\ - \end{gathered}$	ns ns ns us	RC osc mode XT osc mode HS osc mode LP osc mode
2	Tcy	Instruction Cycle Time ${ }^{(\mathbf{1})}$	1.0	Fos/4	DC	$\mu \mathrm{s}$	Tcy=Fos/4
3*	TosL, TosH	External Clock in (OSC1) High or Low Time	$\begin{gathered} \hline 100^{*} \\ 2^{\star} \\ 20^{*} \end{gathered}$	$-$	$-$	$\begin{aligned} & \text { ns } \\ & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$	XT osc mode LP osc mode HS osc mode
4*	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	$\begin{aligned} & \hline 25^{*} \\ & 50^{*} \\ & 15^{*} \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$	XT osc mode LP osc mode HS osc mode

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.
Note 1: Instruction cycle period (Tcy) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 10-7: CLKOUT AND I/O TIMING

Note 1: All tests must be done with specified capacitance loads (Figure 10-5) 50 pF on I/O pins and CLKOUT.

TABLE 10-2: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter \#	Sym	Characteristic	Min	Typ \dagger	Max	Units
10*	TosH2ckL	OSC1^ to CLKOUT $\downarrow{ }^{(1)}$	-	75	200	ns
			-	-	400	ns
11*	TosH2ckH	OSC1 \uparrow to CLKOUT $\uparrow{ }^{(1)}$	-	75	200	ns
			-	-	400	ns
12*	TckR	CLKOUT rise time ${ }^{(1)}$	-	35	100	ns
			-	-	200	ns
13*	TckF	CLKOUT fall time ${ }^{(\mathbf{1})}$	-	35	100	ns
			-	-	200	ns
14*	TckL2ioV	CLKOUT \downarrow to Port out valid ${ }^{(1)}$	-	-	20	ns
15*	TioV2ckH	Port in valid before CLKOUT $\uparrow{ }^{(1)}$	Tosc +200 ns	-	-	ns
			Tosc +400 ns	-	-	ns
16*	TckH2iol	Port in hold after CLKOUT $\uparrow\left(\begin{array}{l}\text { (1) }\end{array}\right.$	0	-	-	ns
17*	TosH2ioV	OSC1 \uparrow (Q1 cycle) to Port out valid	-	50	150	ns
			-		300	ns
18*	TosH2iol	OSC1 \uparrow (Q2 cycle) to Port input invalid (I/O in hold time)	100	-	-	ns
			200	-	-	ns
19*	TioV2osH	Port input valid to OSC1 \uparrow (/O in setup time)	0	-	-	ns
20*	TioR	Port output rise time	-	10	40	ns
			-	-	80	ns
21*	TioF	Port output fall time	-	10	40	ns
			-	-	80	ns
22*	Tinp	RB0/INT pin high or low time	25	-	-	ns
			40	-	-	ns
23*	Trbp	$\mathrm{RB}<7: 4>$ change interrupt high or low time	Tcy	-	-	ns

\dagger Data in "Typ" column is at $5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

PIC16C55X

FIGURE 10-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 10-3: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER REQUIREMENTS

Param No.	Sym	Characteristic	Min	Typ \dagger	Max	Units	Conditions
30	TmcL	$\overline{\text { MCLR Pulse Width (low) }}$	2000	-	-	ns	-40° to $+85^{\circ} \mathrm{C}$
31	Twdt	Watchdog Timer Timeout Period (No Prescaler)	7^{*}	18	33^{*}	ms	VDD $=5.0 \mathrm{~V},-40^{\circ}$ to $+85^{\circ} \mathrm{C}$
32	Tost	Oscillation Start-up Timer Period	-	1024 Tosc	-	-	Tosc $=$ OSC1 period
33	Tpwrt	Power-up Timer Period	28^{*}	72	132^{*}	ms	VDD $=5.0 \mathrm{~V},-40^{\circ}$ to $+85^{\circ} \mathrm{C}$
34	TIOz	I/O hi-impedance from $\overline{\mathrm{MCLR}}$ low		-	2.0^{\star}	$\mu \mathrm{s}$	

These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 10-9: TIMERO CLOCK TIMING

TABLE 10-4: TIMERO CLOCK REQUIREMENTS

Param No.	Sym	Characteristic		Min	Typ \dagger	Max	Units	Conditions
40	TtOH	TOCKI High Pulse Width	No Prescaler	0.5 TCY + 20*	-	-	ns	
			With Prescaler	10*	-	-	ns	
41	TtOL	T0CKI Low Pulse Width	No Prescaler	0.5 TCY + 20*	-	-	ns	
			With Prescaler	10*	-	-	ns	
42	TtOP	TOCKI Period		$\frac{\mathrm{TCY}+40^{*}}{\mathrm{~N}}$	-	-	ns	$\begin{gathered} \mathrm{N}=\text { prescale value } \\ (1,2,4, \ldots, 256) \end{gathered}$

* These parameters are characterized but not tested.
\dagger Data in "Typ" column is at $5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 10-10: LOAD CONDITIONS

| Load condition 1 | Load condition 2 |
| :--- | :--- | :--- |
| $\mathrm{RL}=464 \Omega$ | |
| $\mathrm{CL}=50 \mathrm{pF}$ | for all pins except OSC2 |
| 15 pF | for OSC2 output |

PIC16C55X

NOTES:

11.0 PACKAGING INFORMATION

11.1 Package Marking Information

18-Lead PDIP

28-Lead PDIP

20-Lead SSOP

28-Lead SSOP

Example

Example

Example

Example

Legend: $X X \ldots$ Customer-specific information

YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
(e3) Pb-free JEDEC designator for Matte Tin (Sn)

* This package is Pb -free. The Pb -free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

PIC16C55X

Package Marking Information (Cont'd)

18-Lead SOIC (.300")

Example

Example

Example

Example

18-Lead Plastic Dual In-line (P) - 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	p		. 100			2.54	
Top to Seating Plane	A	. 140	. 155	. 170	3.56	3.94	4.32
Molded Package Thickness	A2	. 115	. 130	. 145	2.92	3.30	3.68
Base to Seating Plane	A1	. 015			0.38		
Shoulder to Shoulder Width	E	. 300	. 313	. 325	7.62	7.94	8.26
Molded Package Width	E1	. 240	. 250	. 260	6.10	6.35	6.60
Overall Length	D	. 890	. 898	. 905	22.61	22.80	22.99
Tip to Seating Plane	L	. 125	. 130	. 135	3.18	3.30	3.43
Lead Thickness	c	. 008	. 012	. 015	0.20	0.29	0.38
Upper Lead Width	B1	. 045	. 058	. 070	1.14	1.46	1.78
Lower Lead Width	B	. 014	. 018	. 022	0.36	0.46	0.56
Overall Row Spacing §	eB	. 310	. 370	. 430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter
§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
$.010 "$ (0.254 mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-007

PIC16C55X

28-Lead Skinny Plastic Dual In-line (SP) - 300 mil (PDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	p		. 100			2.54	
Top to Seating Plane	A	. 140	. 150	. 160	3.56	3.81	4.06
Molded Package Thickness	A2	. 125	. 130	. 135	3.18	3.30	3.43
Base to Seating Plane	A1	. 015			0.38		
Shoulder to Shoulder Width	E	. 300	. 310	. 325	7.62	7.87	8.26
Molded Package Width	E1	. 275	. 285	. 295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	. 125	. 130	. 135	3.18	3.30	3.43
Lead Thickness	c	. 008	. 012	. 015	0.20	0.29	0.38
Upper Lead Width	B1	. 040	. 053	. 065	1.02	1.33	1.65
Lower Lead Width	B	. 016	. 019	. 022	0.41	0.48	0.56
Overall Row Spacing §	eB	. 320	. 350	. 430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
. $010^{\prime \prime}$ (0.254 mm) per side.
JEDEC Equivalent: MO-095
Drawing No. C04-070

18-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimension Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		18			18	
Pitch	p		.050			1.27	
Overall Height	A	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E 1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	ϕ	0	4	8	0	4	8
Lead Thickness	C	.009	.011	.012	0.23	0.27	0.30
Lead Width	B	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010" (0.254 mm) per side.
JEDEC Equivalent: MS-013
Drawing No. C04-051

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES*			MILLIMETERS		
Dimension Limits	MIN	NOM	MAX	MIN	NOM	MAX	
	n		28			28	
Number of Pins	p		.050			1.27	
Pitch	A	.093	.099	.104	2.36	2.50	2.64
Overall Height	A 2	.088	.091	.094	2.24	2.31	2.39
Molded Package Thickness	A 1	.004	.008	.012	0.10	0.20	0.30
Standoff §	E	.394	.407	.420	10.01	10.34	10.67
Overall Width	E 1	.288	.295	.299	7.32	7.49	7.59
Molded Package Width	D	.695	.704	.712	17.65	17.87	18.08
Overall Length	h	.010	.020	.029	0.25	0.50	0.74
Chamfer Distance	L	.016	.033	.050	0.41	0.84	1.27
Foot Length	ϕ	0	4	8	0	4	8
Foot Angle Top	C	.009	.011	.013	0.23	0.28	0.33
Lead Thickness	B	.014	.017	.020	0.36	0.42	0.51
Lead Width	α	0	12	15	0	12	15
Mold Draft Angle Top	β	0	12	15	0	12	15
Mold Draft Angle Bottom							

* Controlling Parameter
§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254 mm) per side.
JEDEC Equivalent: MS-013
Drawing No. C04-052

18-Lead Ceramic Dual In-line with Window (JW) - $\mathbf{3 0 0}$ mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	p		. 100			2.54	
Top to Seating Plane	A	. 170	. 183	. 195	4.32	4.64	4.95
Ceramic Package Height	A2	. 155	. 160	. 165	3.94	4.06	4.19
Standoff	A1	. 015	. 023	. 030	0.38	0.57	0.76
Shoulder to Shoulder Width	E	. 300	. 313	. 325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	. 285	. 290	. 295	7.24	7.37	7.49
Overall Length	D	. 880	. 900	. 920	22.35	22.86	23.37
Tip to Seating Plane	L	. 125	. 138	. 150	3.18	3.49	3.81
Lead Thickness	c	. 008	. 010	. 012	0.20	0.25	0.30
Upper Lead Width	B1	. 050	. 055	. 060	1.27	1.40	1.52
Lower Lead Width	B	. 016	. 019	. 021	0.41	0.47	0.53
Overall Row Spacing §	eB	. 345	. 385	. 425	8.76	9.78	10.80
Window Width	W1	. 130	. 140	. 150	3.30	3.56	3.81
Window Length	W2	. 190	. 200	. 210	4.83	5.08	5.33

* Controlling Parameter
§ Significant Characteristic
JEDEC Equivalent: MO-036
Drawing No. C04-010

PIC16C55X

28-Lead Ceramic Dual In-line with Window (JW) - 300 mil (CERDIP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

UnitsDimension Limits		INCHES*			MILLIMETERS		
		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	p		. 100			2.54	
Top to Seating Plane	A	. 170	. 183	. 195	4.32	4.64	4.95
Ceramic Package Height	A2	. 155	. 160	. 165	3.94	4.06	4.19
Standoff	A1	. 015	. 023	. 030	0.38	0.57	0.76
Shoulder to Shoulder Width	E	. 300	. 313	. 325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	. 285	. 290	. 295	7.24	7.37	7.49
Overall Length	D	1.430	1.458	1.485	36.32	37.02	37.72
Tip to Seating Plane	L	. 135	. 140	. 145	3.43	3.56	3.68
Lead Thickness	c	. 008	. 010	. 012	0.20	0.25	0.30
Upper Lead Width	B1	. 050	. 058	. 065	1.27	1.46	1.65
Lower Lead Width	B	. 016	. 019	. 021	0.41	0.47	0.53
Overall Row Spacing §	eB	. 345	. 385	. 425	8.76	9.78	10.80
Window Width	W1	. 130	. 140	. 150	3.30	3.56	3.81
Window Length	W2	. 290	. 300	. 310	7.37	7.62	7.87

* Controlling Parameter
§ Significant Characteristic
JEDEC Equivalent: MO-058
Drawing No. C04-080

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES*			MILLIMETERS		
		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	p		. 026			0.65	
Overall Height	A	. 068	. 073	. 078	1.73	1.85	1.98
Molded Package Thickness	A2	. 064	. 068	. 072	1.63	1.73	1.83
Standoff §	A1	. 002	. 006	. 010	0.05	0.15	0.25
Overall Width	E	. 299	. 309	. 322	7.59	7.85	8.18
Molded Package Width	E1	. 201	. 207	. 212	5.11	5.25	5.38
Overall Length	D	. 278	. 284	. 289	7.06	7.20	7.34
Foot Length	L	. 022	. 030	. 037	0.56	0.75	0.94
Lead Thickness	c	. 004	. 007	. 010	0.10	0.18	0.25
Foot Angle	ϕ	0	4	8	0.00	101.60	203.20
Lead Width	B	. 010	. 013	. 015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254 mm) per side.
JEDEC Equivalent: MO-150
Drawing No. C04-072

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES			MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	p		. 026			0.65	
Overall Height	A	. 068	. 073	. 078	1.73	1.85	1.98
Molded Package Thickness	A2	. 064	. 068	. 072	1.63	1.73	1.83
Standoff §	A1	. 002	. 006	. 010	0.05	0.15	0.25
Overall Width	E	. 299	. 309	. 319	7.59	7.85	8.10
Molded Package Width	E1	. 201	. 207	. 212	5.11	5.25	5.38
Overall Length	D	. 396	. 402	. 407	10.06	10.20	10.34
Foot Length	L	. 022	. 030	. 037	0.56	0.75	0.94
Lead Thickness	c	. 004	. 007	. 010	0.10	0.18	0.25
Foot Angle	ϕ	0	4	8	0.00	101.60	203.20
Lead Width	B	. 010	. 013	. 015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010" (0.254 mm) per side
JEDEC Equivalent: MS-150
Drawing No. C04-073

APPENDIX A: ENHANCEMENTS

The following are the list of enhancements over the PIC16C5X microcontroller family:

1. Instruction word length is increased to 14 bits. This allows larger page sizes both in program memory (4K now as opposed to 512 before) and register file (up to 128 bytes now versus 32 bytes before).
2. A PC high latch register (PCLATH) is added to handle program memory paging. PA2, PA1, PA0 bits are removed from STATUS register.
3. Data memory paging is slightly redefined. STATUS register is modified.
4. Four new instructions have been added: RETURN, RETFIE, ADDLw, and SUBLw.
Two instructions tris and OPTION are being phased out although they are kept for compatibility with PIC16C5X.
5. OPTION and TRIS registers are made addressable.
6. Interrupt capability is added. Interrupt vector is at 0004h.
7. Stack size is increased to 8 deep.
8. RESET vector is changed to 0000h.
9. RESET of all registers is revised. Three different RESET (and wake-up) types are recognized. Registers are reset differently.
10. Wake-up from SLEEP through interrupt is added.
11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
12. PORTB has weak pull-ups and interrupt-onchange feature.
13. Timer0 clock input, TOCKI pin is also a port pin (RA4/TOCKI) and has a TRIS bit.
14. FSR is made a full 8-bit register.
15. "In-circuit programming" is made possible. The user can program PIC16C55X devices using only five pins: VdD, Vss, VPP, RB6 (clock) and RB7 (data in/out).
16. PCON status register is added with a Power-on Reset ($\overline{\mathrm{POR}}$) status bit.
17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
18. PORTA inputs are now Schmitt Trigger inputs.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16C5X to PIC16C55X, the user should take the following steps:

1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
5. Change RESET vector to 0000h.

APPENDIX C: REVISION HISTORY

Revision E (January 2013)
Added a note to each package outline drawing.

PIC16C55X

NOTES:
INDEX
A
ADDLW Instruction 55
ADDWF Instruction 55
ANDLW Instruction 55
ANDWF Instruction 55
Architectural Overview 9
Assembler
MPASM Assembler 67
B
BCF Instruction 56
Block Diagram
TIMERO 47
TMRO/WDT PRESCALER 50
BSF Instruction 56
BTFSC Instruction 56
BTFSS Instruction 57
c
CALL Instruction 57
Clocking Scheme/Instruction Cycle 12
CLRF Instruction 57
CLRW Instruction 58
CLRWDT Instruction 58
Code Protection 46
COMF Instruction 58
Configuration Bits 31
D
Data Memory Organization 13
DECF Instruction 58
DECFSZ Instruction 59
Development Support 67
E
Errata 3
External Crystal Oscillator Circuit 34
G
General purpose Register File 13
GOTO Instruction 59
I
I/O Ports 23
I/O Programming Considerations 28
ICEPIC In-Circuit Emulator 68
ID Locations 46
INCF Instruction 59
INCFSZ Instruction 60
In-Circuit Serial Programming 46
Indirect Addressing, INDF and FSR Registers 21
Instruction Flow/Pipelining 12
Instruction Set
ADDLW 55
ADDWF. 55
ANDLW 55
ANDWF 55
BCF. 56
BSF. 56
BTFSC 56
BTFSS 57
CALL 57
CLRF 57
CLRW 58
CLRWDT 58
COMF 58
DECF 58
DECFSZ 59
GOTO 59
INCF 59
INCFSZ 60
IORLW 60
IORWF. 60
MOVF 61
MOVLW 60
MOVWF 61
NOP. 61
OPTION 61
RETFIE 62
RETLW 62
RETURN 62
RLF 62
RRF 63
SLEEP 63
SUBLW 63
SUBWF 64
SWAPF 64
TRIS 64
XORLW 65
XORWF 65
Instruction Set Summary 53
INT Interrupt 42
INTCON Register 19
Interrupts 41
IORLW Instruction 60
IORWF Instruction 60
K
KeeLoq Evaluation and Programming Tools 70
M
MOVF Instruction 61
MOVLW Instruction. 60
MOVWF Instruction 61
MPLAB C17 and MPLAB C18 C Compilers 67
MPLAB ICD In-Circuit Debugger 69
MPLAB ICE High Performance Universal In-Circuit Emulatorwith MPLAB IDE68
MPLAB Integrated Development Environment Software 67
MPLINK Object Linker/MPLIB Object Librarian 68
N
NOP Instruction 61
0
One-Time-Programmable (OTP) Devices 7
OPTION Instruction 61
OPTION Register. 18
Oscillator Configurations 33
Oscillator Start-up Timer (OST) 36
P
PCL and PCLATH 21
PCON Register 20
PICDEM 1 Low Cost PIC MCU Demonstration Board 69
PICDEM 17 Demonstration Board. 70
PICDEM 2 Low Cost PIC16CXX Demonstration Board 69
PICDEM 3 Low Cost PIC16CXXX Demonstration Board 70

PIC16C55X

PICSTART Plus Entry Level Development Programmer 69
Port RB Interrupt 42
PORTA 23
PORTB 25, 27
Power Control/Status Register (PCON) 37
Power-Down Mode (SLEEP) 45
Power-On Reset (POR) 36
Power-up Timer (PWRT) 36
Prescaler 49
PRO MATE II Universal Device Programmer 69
Program Memory Organization 13
Q
Quick-Turnaround-Production (QTP) Devices7
R
RC Oscillator 34
Reset. 35
RETFIE Instruction 62
RETLW Instruction 62
RETURN Instruction 62
RLF Instruction 62
RRF Instruction 63
S
Serialized Quick-Turnaround-Production (SQTP) Devices ... 7
SLEEP Instruction 63
Software Simulator (MPLAB SIM) 68
Special Features of the CPU 31
Special Function Registers 15
Stack 21
Status Register 17
SUBLW Instruction 63
SUBWF Instruction 64
SWAPF Instruction. 64
T
Timer0
TIMERO 47
TIMERO (TMRO) Interrupt 47
TIMERO (TMRO) Module 47
TMRO with External Clock 49
Timer1
Switching Prescaler Assignment 51
Timing Diagrams and Specifications 81
TMRO Interrupt 42
TRIS Instruction 64
TRISA. 23
TRISB 25, 27
W
Watchdog Timer (WDT) 43
WWW, On-Line Support. 3
X
XORLW Instruction 65
XORWF Instruction 65

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support - Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support - Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip - Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.
To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.
Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

```
TO: Technical Publications Manager
Total Pages Sent
```

\qquad

```
RE: Reader Response
From: Name
```

\qquad

```
Company
Address
``` \(\qquad\)
```

City / State / ZIP / Country

``` \(\qquad\)
\(\qquad\)
```

Application (optional):
Would you like a reply? Y N
Device:
Literature Number: DS40143E
Questions:

1. What are the best features of this document?
```
\(\qquad\)
2. How does this document meet your hardware and software development needs?
\(\qquad\)
\(\qquad\)
3. Do you find the organization of this document easy to follow? If not, why?
\(\qquad\)
4. What additions to the document do you think would enhance the structure and subject?
\(\qquad\)
5. What deletions from the document could be made without affecting the overall usefulness?
\(\qquad\)
\(\qquad\)
6. Is there any incorrect or misleading information (what and where)?
\(\qquad\)
\(\qquad\)
7. How would you improve this document?
\(\qquad\)
\(\qquad\)

\section*{PRODUCT IDENTIFICATION SYSTEM}

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type.

\section*{Sales and Support}

\section*{Data Sheets}

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:
1. Your local Microchip sales office
2. The Microchip Worldwide Site (www.microchip.com)

NOTES:

\section*{NOTES:}

\section*{Note the following details of the code protection feature on Microchip devices:}
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

\section*{Trademarks}

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KeeLoq, KeeLoq logo, MPLAB, PIC, PICmicro, PICSTART, PIC \({ }^{32}\) logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.
Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.
Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and \(Z\)-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH \& Co. \& KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 1996-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
ISBN: 9781620769737

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ \({ }^{\circledR}\) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Microchip

\section*{Worldwide Sales and Service}
AMERICAS
Corporate Office
2355 West Chandler Blvd.

Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com

\section*{Atlanta}

Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455

\section*{Boston}

Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075

\section*{Cleveland}

Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643

\section*{Dallas}

Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Indianapolis
Noblesville, \(\operatorname{IN}\)
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario, Canada
Tel: 905-673-0699
Fax: 905-673-6509

\section*{ASIA/PACIFIC}

Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China-Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Hangzhou
Tel: 86-571-2819-3187
Fax: 86-571-2819-3189
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049

\section*{ASIA/PACIFIC}

India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880-3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea-Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069

\section*{Singapore}

Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan-Kaohsiung
Tel: 886-7-213-7828
Fax: 886-7-330-9305
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

\section*{EUROPE}

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820```

