

STF18N60DM2

N-channel 600 V, 0.260 Ω typ., 13 A MDmesh™ DM2 Power MOSFET in a TO-220FP package

Datasheet - production data

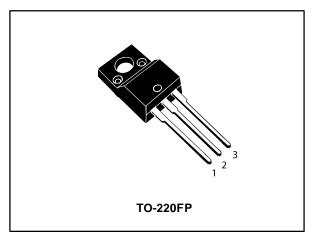
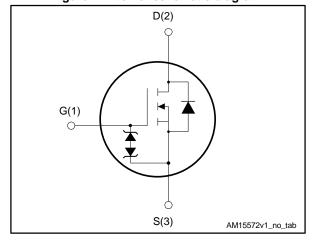



Figure 1: Internal schematic diagram

Features

Order code	V _{DS} R _{DS(on)} max.		ID
STF18N60DM2	600 V	0.295 Ω	13 A

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high voltage N-channel Power MOSFET is part of the MDmesh $^{\text{TM}}$ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low R_{DS(on)}, rendering it suitable for the most demanding high efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STF18N60DM2	18N60DM2	TO-220FP	Tube

Contents STF18N60DM2

Contents

1	Electrical ratings		
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220FP package information	10
5	Revisio	n history	12

STF18N60DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±25	V
I _D ⁽¹⁾	Drain current (continuous) at T _{case} = 25 °C	13	Λ.
ID(*/	Drain current (continuous) at T _{case} = 100 °C	7.6	Α
I _{DM} ⁽²⁾	Drain current (pulsed) 48		Α
Ртот	Total dissipation at T _{case} = 25 °C 25		W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	40	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/IIS
Viso	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; T_C = 25 °C)	2500	V
T _{stg}	Storage temperature range -55 to 150		°C
Tj	Operating junction temperature range	-55 (0 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	5	°C // //
R _{thj-amb}	Thermal resistance junction-ambient 62.5		°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	2.5	Α
E _{AR} ⁽²⁾	Single pulse avalanche energy		mJ

Notes:

⁽¹⁾ Limited by maximum junction temperature.

⁽²⁾ Pulse width is limited by safe operating area.

 $^{^{(3)}}$ I_{SD} \leq 12 A, di/dt \leq 400 A/ μ s, V_{DS}(peak) < V(BR)DSS, V_{DD} = 80% V(BR)DSS.

 $^{^{(4)}}$ V_{DS} ≤ 480 V.

 $^{^{(1)}}$ Pulse width is limited by T_{jmax} .

 $^{^{(2)}}$ starting T_j = 25 °C, I_D = $I_{AR},\,V_{DD}$ = 50 V.

Electrical characteristics STF18N60DM2

2 Electrical characteristics

(T_{case}= 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			٧
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1.5	
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V, T _{case} = 125 °C			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _G S = 10 V, I _D = 6 A		0.260	0.295	Ω

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	800	ı	
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	40	ı	pF
Crss	Reverse transfer capacitance	Ves = 0 V	-	1.33	-	ρ.
Coss eq. (1)	Equivalent output capacitance	, , ,		80	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	5.6	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 12 \text{ A},$	-	20	•	
Q _{gs}	Gate-source charge	V _{GS} = 10 V (see Figure 15: "Test circuit for gate charge	-	5.2	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	8.5	-	

Notes:

4/13

Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 6 \text{ A R}_G = 4.7 \Omega,$	ı	13.5	ı	
tr	Rise time	V _{GS} = 10 V (see Figure 14: "Test circuit for resistive load switching		8	-	
$t_{d(off)}$	Turn-off-delay time	times" and Figure 19: "Switching	-	9.5	-	ns
t _f	Fall time	time waveform")	-	32.5	-	

 $^{^{(1)}}$ Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when VDS increases from 0 to 80% VDSS

Table 8: Source-drain diode

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		12	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		48	А
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 12 A	-		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 12 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	125		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	675		nC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	ı	11		А
t _{rr}	Reverse recovery time	$I_{SD} = 12 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s,}$	-	190		ns
Qrr	Reverse recovery charge	V_{DD} = 60 V, T_j = 150 °C (see Figure 16: "Test circuit for	-	1200		nC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	13		А

Notes:

 $^{^{(1)}}$ Pulse width is limited by safe operating area.

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%.

2.1 Electrical characteristics (curves)

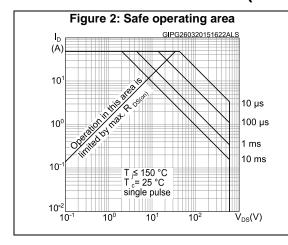


Figure 3: Thermal impedance $K = \frac{GC20940}{\delta = 0.5}$ $\frac{\delta = 0.2}{\delta = 0.02}$ $\frac{\delta = 0.02}{\delta = 0.01}$ $\frac{\delta = 0.02}{\delta = 0.01}$ $\frac{\delta = 0.02}{\delta = 0.02}$ $\frac{\delta = 0.02}{\delta = 0.01}$ $\frac{\zeta_{lh} = K^*R_{lh}_{lh}_{lh}_{lh}}{\delta = t_{lh}/T}$ $\frac{10^{-3}}{10^{-4}}$ $\frac{10^{-3}}{10^{-4}}$

Figure 4: Output characteristics

ID GIPG290415FQ6GOCH

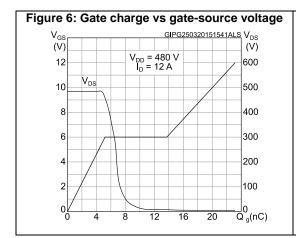
(A) V_{GS} = 7,8,9,10 V

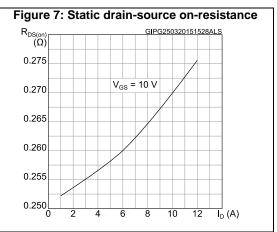
24

20

16

12


8


4

0

0

2 4 6 8 10 12 V_{DS} (V)

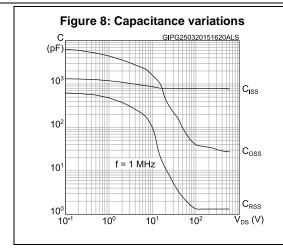


Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG250320151534ALS

(norm.)

2.2

V_{GS}= 10 V

1.8

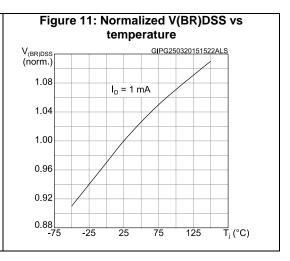
1.4

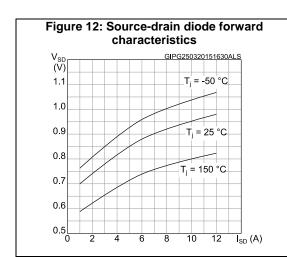
1.0

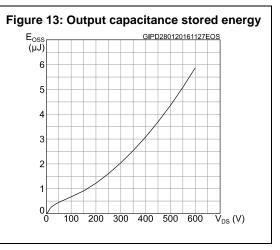
0.6

0.2

-75


-25


25


75

125

T_j (°C)

Test circuits STF18N60DM2

3 Test circuits

Figure 14: Test circuit for resistive load switching times

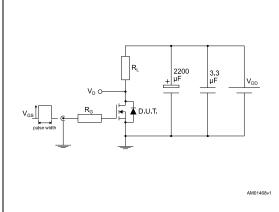


Figure 15: Test circuit for gate charge behavior

12 V 47 KΩ 100 Ω 1 KΩ

Vos 1 100 Ω 1 LΩ

2200 1 1 KΩ

AM01469-1

Figure 16: Test circuit for inductive load switching and diode recovery times

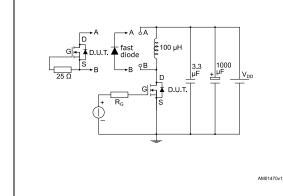


Figure 17: Unclamped inductive load test circuit

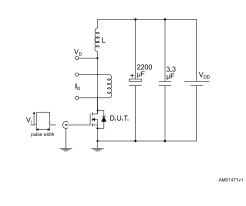


Figure 18: Unclamped inductive waveform

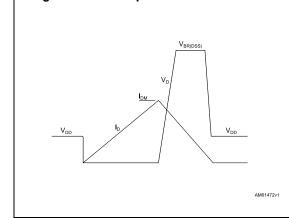
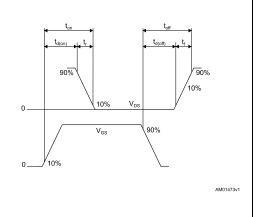



Figure 19: Switching time waveform

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-220FP package information

Figure 20: TO-220FP package outline

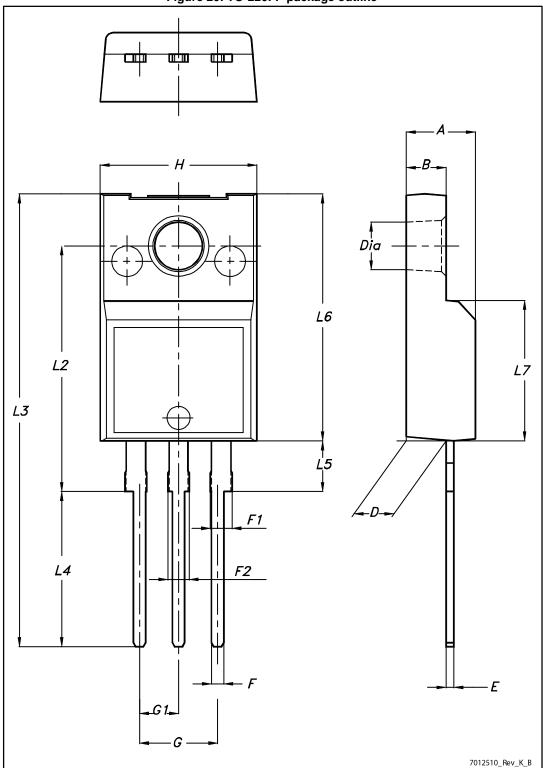


Table 9: TO-220FP package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
Α	4.4		4.6
В	2.5		2.7
D	2.5		2.75
Е	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

Revision history STF18N60DM2

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
01-Apr-2015	1	First release.
21-May-2015	2	Text edits throughout document In Section 2.1 Electrical characteristics (curves): - updated Figure 4: Output characteristics - updated Figure 5: Transfer characteristics
02-Jul-2015	3	Updated title and I _D values in features and Table 1
28-Jan-2016	4	Updated Section 2.1: "Electrical characteristics (curves)".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

